Return to search

XTHREAD : a flexible concurrency analysis framework

Many different methodologies have been developed for analyzing multithreaded programs. These analyses present a wide variety of approaches and tend to be rather complicated because they work on applications formed by several threads executed in a nondeterministic order. / To address these issues this thesis introduces XThread, a flexible and modular framework for developing different concurrency analyses over multithreaded applications. The main objective of XTHREAD is to reduce the complexity of developing concurrency analyses by providing high level abstractions that close the breach between the language spoken by the researcher and the language the framework provides. Moreover, this framework provides different tools that are often required for solving issues common to many concurrency analyses. XTHREAD's modular organization also delivers a flexible environment for developing and testing different analysis implementations. / In order to demonstrate the usefulness of the framework a client analysis representing known but non-trivial multithreaded analysis is developed which is composed of several other concurrency analysis. A substantial number of benchmarks are used in order to test the implementations, showing that complex programs are accepted and correctly handled by the abstractions provided by the framework. Using the XTHREAD framework we demonstrate implementations that have both comparable accuracy and much better generality than is typically found in existing, research-level implementations of concurrency analyses.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.101168
Date January 2006
CreatorsRessia, Jorge Luis.
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Science (School of Computer Science.)
Rights© Jorge Luis Ressia, 2006
Relationalephsysno: 002598443, proquestno: AAIMR32777, Theses scanned by UMI/ProQuest.

Page generated in 0.0019 seconds