Return to search

Automatic control strategies of mean arterial pressure and cardiac output : MIMO controllers, PID, internal model control, adaptive model reference, and neural nets are developed to regulate mean arterial pressure and cardiac output using the drugs Sodium Nitroprusside and Dopamine

High blood pressure, also called hypertension is one of the most common worldwide diseases afflicting humans and is a major risk factor for stroke, myocardial infarction, vascular disease, and chronic kidney disease. If blood pressure is controlled and oscillations in the hemodynamic variables are reduced, patients experience fewer complications after surgery. In clinical practice, this is usually achieved using manual drug delivery. Given that different patients have different sensitivity and reaction time to drugs, determining manually the right drug infusion rates may be difficult. This is a problem where automatic drug delivery can provide a solution, especially if it is designed to adapt to variations in the patient’s conditions. This research work presents an investigation into the development of abnormal blood pressure (hypertension) controllers for postoperative patients. Control of the drugs infusion rates is used to simultaneously regulate the hemodynamic variables such as the Mean Arterial Pressure (MAP) and the Cardiac Output (CO) at the desired level. The implementation of optimal control system is very essential to improve the quality of patient care and also to reduce the workload of healthcare staff and costs. Many researchers have conducted studies earlier on modelling and/or control of abnormal blood pressure for postoperative patients. However, there are still many concerns about smooth transition of blood pressure without any side effect. The blood pressure is classified in two categories: high blood pressure (Hypertension) and low blood pressure (Hypotension). The hypertension often occurred after cardiac surgery, and the hypotension occurred during cardiac surgery. To achieve the optimal control solution for these abnormal blood pressures, many methods are proposed, one of the common methods is infusing the drug related to blood pressure to maintain it at the desired level. There are several kinds of vasodilating drugs such as Sodium Nitroprusside (SNP), Dopamine (DPM), Nitro-glycerine (NTG), and so on, which can be used to treat postoperative patients, also used for hypertensive emergencies to keep the blood pressure at safety level. A comparative performance of two types of algorithms has been presented in chapter four. These include the Internal Model Control (IMC), and Proportional-Integral-Derivative (PID) controller. The resulting controllers are implemented, tested and verified for three sensitivity patient response. SNP is used for all three patients’ situation in order to reduce the pressure smoothly and maintain it at the desire level. A Genetic Algorithms (GAs) optimization technique has been implemented to optimise the controllers’ parameters. A set of experiments are presented to demonstrate the merits and capabilities of the control algorithms. The simulation results in chapter four have demonstrated that the performance criteria are satisfied with the IMC, and PID controllers. On the other hand, the settling time for the PID control of all three patients’ response is shorter than the settling time with IMC controller. Using multiple interacting drugs to control both the MAP and CO of patients with different sensitivity to drugs is a challenging task. A Multivariable Model Reference Adaptive Control (MMRAC) algorithm is developed using a two-input, two-output patient model. Because of the difference in patient’s sensitivity to the drug, and in order to cover the wide ranges of patients, Model Reference Adaptive Control (MRAC) has been implemented to obtain the optimal infusion rates of DPM and SNP. This is developed in chapters five and six. Computer simulations were carried out to investigate the performance of this controller. The results show that the proposed adaptive scheme is robust with respect to disturbances and variations in model parameters, the simulation results have demonstrated that this algorithm cannot cover the wide range of patient’s sensitivity to drugs, due to that shortcoming, a PID controller using a Neural Network that tunes the controller parameters was designed and implemented. The parameters of the PID controller were optimised offline using Matlab genetic algorithm. The proposed Neuro-PID controller has been tested and validated to demonstrate its merits and capabilities compared to the existing approaches to cover wide range of patients.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:725091
Date January 2013
CreatorsEnbiya, Saleh Abdalla
PublisherUniversity of Bradford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/10454/13421

Page generated in 0.0024 seconds