Return to search

The deubiquitinating enzyme USP19 negatively regulates the expression of muscle-specific genes in L6 muscle cells /

Muscle wasting is a significant complication of many diseases including diabetes mellitus, renal and liver failure, HIV/AIDS, and cancer. Sustained loss of skeletal muscle can severely impair a patient's quality of life and often results in poor tolerance and responsiveness to disease treatments. The increased protein breakdown observed during muscle atrophy has been attributed to accelerated activity of the ubiquitin-proteasome pathway, but the precise mechanisms by which this activation stimulates muscle protein loss are poorly understood. Previous work showed that the deubiquitinating enzyme USP19 is upregulated in rat skeletal muscle in various forms of muscle wasting, including streptozotocin induced diabetes, cancer, and dexamethasone treatment. 1 To further explore the role of USP19 in muscle wasting, siRNA-mediated depletion of the enzyme was carried out in L6 myotubes. Knockdown of USP19 resulted in more rapid differentiation of myoblasts into myotubes, with a greater extent of myoblast fusion. It also produced tubes that were visibly larger than those formed by myoblasts transfected with a control siRNA. At the molecular level, silencing of USP19 increased the amount of myosin heavy chain (MHC) and tropomyosin proteins. It also increased levels of MHC transcript, suggesting that USP19 acts at the level of gene transcription or mRNA stability rather than protein degradation. USP19 may mediate its effects on muscle-specific gene expression through the myogenic transcription factor myogenin, since depletion of USP19 increased protein and mRNA levels myogenin but did not affect protein levels of the related transcription factor Myf5. Moreover, the increased tropomyosin and MHC observed upon USP19 knockdown could be abolished when myogenin was simultaneously depleted using siRNA. Collectively, these results suggest that USP19 functions to inhibit the synthesis of key muscle proteins and may therefore be a promising target for the treatment of muscle atrophy.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.111547
Date January 2008
CreatorsSundaram, Priyanka.
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Science (Department of Biochemistry.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 003135220, proquestno: AAIMR66727, Theses scanned by UMI/ProQuest.

Page generated in 0.0023 seconds