Return to search

Role of the G protein-coupled receptor kinase 2 in mediating transforming growth factor beta and G protein-coupled receptor signaling and crosstalk mechanisms

Transforming growth factor beta (TGFbeta) and Angiotensin II (AngII) signaling occurs through two distinct receptor superfamilies, the serine/threonine kinase and G protein-coupled receptors (GPCRs). Through diametric actions, TGFbeta and AngII regulate various biological responses, including cell proliferation and migration. Previously, we identified the G protein-coupled receptor kinase 2 (GRK2), which acts through a negative feedback loop mechanism to terminate Smad signaling. To investigate the impact of TGFbeta-induced GRK2 expression on GPCR signaling, we examined its effect on AngII signaling in vascular smooth muscle cells (VSMCs). We show that activation of the TGFbeta signaling cascade results in increased GRK2 expression levels, consequently inhibiting AngII-induced ERK phosphorylation and antagonizing AngII-induced VSMC proliferation and migration. The inhibitory effect of TGFbeta on AngII signaling occurs at the MEK-ERK interface and is abrogated when an anti-sense oligonucleotide directed against GRK2 is used. Thus, we conclude that TGFbeta signaling antagonizes AngII-induced VSMC proliferation and migration through the inhibition of ERK phosphorylation. GRK2 is a key factor in mediating this crosstalk.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.112540
Date January 2007
CreatorsMancini, Johanna.
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Science (Division of Experimental Medicine.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 002699741, proquestno: AAIMR51308, Theses scanned by UMI/ProQuest.

Page generated in 0.0024 seconds