Return to search

A Stem Cell Model of the Motor Circuit Reveals Distinct Requirements for SMN in Motor Neuron Survival and Function

Neuronal circuit perturbations are emerging as important determinants in the pathogenesis of neurodegenerative diseases, including Alzheimer’s disease, Huntington’s disease, and spinal muscular atrophy (SMA). SMA is a motor neuron disease caused by deficiency in the ubiquitously expressed survival motor neuron (SMN) protein. The hallmarks of SMA include loss of motor neurons, muscle atrophy, and abnormal postural reflexes. Although cell-autonomous mechanisms of motor neuron death have received much attention, recent studies in animal models of SMA revealed that motor circuit deficits resulting from early impairment of synaptic function and sensory-motor connectivity precede motor neuron death. It remains to be established whether motor circuit dysfunction is a consequence of SMN-deficiency in the motor neuron or SMN-dependent alterations in the activity of premotor neurons.
Here I sought to address these outstanding issues through the development and characterization of a simplified in vitro model of the motor circuit based on the use of embryonic stem cell-derived motor neurons and interneurons. I found that SMN deficiency caused death of motor neurons in co-culture with other neurons as well as in isolation, demonstrating the cell autonomous origin of this defect. SMN requirement for motor neuron function was investigated using intracellular patch clamp recordings to measure both passive and active membrane properties. Remarkably, SMN deficiency induced hyperexcitability of motor neurons only when they are cultured in the presence of interneurons but not in isolation, providing initial evidence that SMN deficiency induces motor neuron hyperexcitability in a non-cell autonomous manner and that dysfunction and death of motor neurons are uncoupled.
To determine the role of SMN-dependent interneuron dysfunction on motor neuron hyperexcitability, the effect of selective SMN depletion in either motor neurons or interneurons was investigated. Importantly, I found that SMN-deficient motor neurons cultured in the presence of wild type interneurons are not hyperexcitable, while the presence of SMN-deficient interneurons is necessary and sufficient to elicit hyperexcitability of wild type motor neurons. Therefore, in the context of SMN deficiency, increased excitability of motor neurons is a homeostatic response to interneuron dysfunction. Although the exact mechanism is currently unknown, reduced glutamatergic drive appears to play a role since glutamatergic receptor blockers phenocopied SMN deficiency in inducing motor neuron hyperexcitability but not neuronal death. Moreover, SMN deficiency caused reduction of excitatory VGluT2 synapses on motor neurons.
In addition to changes in intrinsic membrane properties, SMN deficiency caused severe reduction in the spontaneous activity and firing pattern of motor neurons. However, in contrast to death and hyperexcitability, SMN-dependent deficits in both motor neurons and interneurons appear to underlie this complex phenotype.
The findings presented in this study validate the use of in vitro models to study SMA disease mechanisms and shed new light on the cellular basis of motor circuit dysfunction induced by SMN deficiency that can have predictive value in vivo.

Identiferoai:union.ndltd.org:columbia.edu/oai:academiccommons.columbia.edu:10.7916/D8FX78KZ
Date January 2015
CreatorsJanas, Anna
Source SetsColumbia University
LanguageEnglish
Detected LanguageEnglish
TypeTheses

Page generated in 0.0087 seconds