The goal of this master's thesis research is to enhance the stroke generation capabilities and musical expressivity in robotic drummers. The approach adopted is to understand the physics of human fingers-drumstick-drumhead interaction and try to replicate the same behavior in a robotic drumming system with the minimum number of degrees of freedom. The model that is developed is agnostic to the exact specifications of the robotic drummer that will attempt to emulate human like drum strokes, and therefore can be used in any robotic drummer that uses actuators with complete control over the motor position angle. Initial approaches based on exploiting the instability of a PID control system to generate multiple bounces and the limitations of this approach are also discussed in depth. In order to assess the success of the model and the implementation in the robotic platform a subjective evaluation was conducted. The evaluation results showed that, the observed data was statistically equivalent to the subjects resorting to a blind guess in order to distinguish between a human playing a multiple bounce stroke and a robot playing a similar kind of stroke.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/53617 |
Date | 08 June 2015 |
Creators | Edakkattil Gopinath, Deepak |
Contributors | Weinberg, Gil |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Language | en_US |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Page generated in 0.0022 seconds