Return to search

The Study of Two Strategies for Decreasing Mutant Huntingtin: Degradation by Puromycin Sensitive AminoPeptidase and RNA Interference: A Dissertation

Huntington’s disease (HD) is a fatal neurodegenerative disease caused by a CAG repeat expansion in exon 1 of the huntingtin gene, resulting in an expanded polyglutamine (polyQ) repeat in the huntingtin protein. Patients receive symptomatic treatment for motor, emotional, and cognitive impairments; however, there is no treatment to slow the progression of the disease, with death occurring 15-20 years after diagnosis. Mutant huntingtin protein interferes with multiple cellular processes leading to cellular dysfunction and neuronal loss. Due to the complexity of mutant huntingtin toxicity, many approaches to treating each effect are being investigated. Unfortunately, addressing one cause of toxicity might not result in protection from other toxic insults, necessitating a combination of treatments for HD patients. Ideally, single therapy targeting the mutant mRNA or protein could prevent all downstream toxicities caused by mutant huntingtin. In this work, I used animal models to investigate a potential therapeutic target for decreasing mutant huntingtin protein, and I apply bioluminescent imaging to investigate RNA interference to silence mutant huntingtin target sites.
The enzyme puromycin sensitive aminopeptidase (PSA) has the unique property of degrading polyQ peptides and been implicated in the degradation of huntingtin. In this study, we looked for an effect of decreased PSA on the pathology and behavior in a mouse model of Huntington’s disease. To achieve this, we crossed HD mice with mice with one functional PSA allele and one inactivated PSA allele. We found that PSA heterozygous HD mice develop a greater number of pathological inclusion bodies, representing an accumulation of mutant huntingtin in neurons. PSA heterozygous HD mice also exhibit worsened performance on the raised-beam test, a test for balance and coordination indicating that the PSA heterozygosity impairs the function of neurons with mutant huntingtin. In order to test whether increasing PSA expression ameliorates the HD phenotype in mice we created an adeno-associated virus (AAV) expressing the human form of PSA (AAV-hPSA). Unexpectedly, testing of AAV-hPSA in non-HD mice resulted in widespread toxicity at high doses. These findings suggest that overexpression of PSA is toxic to neurons in the conditions tested.
In the second part of my dissertation work, I designed a model for following the silencing of huntingtin sequences in the brain. Firefly luciferase is a bioluminescent enzyme that is extensively used as a reporter molecule to follow biological processes in vivo using bioluminescent imaging (BLI). I created an AAV expressing the luciferase gene containing huntingtin sequences in the 3'-untranslated region (AAV-Luc-Htt). After co-injection of AAV-Luc-Htt with RNA-silencing molecules (RNAi) into the brain, we followed luciferase activity. Using this method, we tested cholesterol-conjugated siRNA, un-conjugated siRNA, and hairpin RNA targeting both luciferase and huntingtin sequences. Despite being able to detect silencing on isolated days, we were unable to detect sustained silencing, which had been reported in similar studies in tissues other than the brain. We observed an interesting finding that co-injection of cholesterol-conjugated siRNA with AAV-Luc-Htt increased luminescence, findings that were verified in cell culture to be independent of serotype, siRNA sequence, and cell type. That cc-siRNA affects the expression of AAV-Luc-Htt reveals an interesting interaction possibly resulting in increased delivery of AAV into cells or an increase in luciferase expression within the cell. My work presents a method to follow gene silencing of huntingtin targets in the brain, which needs further optimization in order to detect sustained silencing.
Finally, in this dissertation I continue the study of bioluminescent imaging in the brain. We use mice that have been injected in the brain with AAV-Luciferase (AAV-Luc) to screen 34 luciferase substrate solutions to identify the greatest light-emitting substrate in the brain. We identify two substrates, CycLuc1 and iPr-amide as substrates with enhanced light-emitting properties compared with D-luciferin, the standard, commercially available substrate. CycLuc1 and iPr-amide were tested in transgenic mice expressing luciferase in dopaminergic neurons. These novel substrates produced luminescence unlike the standard substrate, D-luciferin which was undetectable. This demonstrates that CycLuc1 and iPr-amide improve the sensitivity of BLI in low expression models. We then used CycLuc1 to test silencing of luciferase in the brain using AAV-shRNA (AAV-shLuc). We were unable to detect silencing in treated mice, despite a 50% reduction of luciferase mRNA. The results from this experiment identify luciferase substrates that can be used to image transgenic mice expressing luciferase in dopaminergic neurons.
My work contributes new data on the study of PSA as a modifier of Huntington’s disease in a knock-in mouse model of Huntington’s disease. My work also makes contributions to the field of bioluminescent imaging by identifying and testing luciferase substrates in the brain to detect low level of luciferase expression.

Identiferoai:union.ndltd.org:umassmed.edu/oai:escholarship.umassmed.edu:gsbs_diss-1763
Date22 May 2013
CreatorsChaurette, Joanna
PublishereScholarship@UMassChan
Source SetsUniversity of Massachusetts Medical School
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMorningside Graduate School of Biomedical Sciences Dissertations and Theses
RightsCopyright is held by the author, with all rights reserved.

Page generated in 0.0026 seconds