Return to search

STUDY OF MLH3 IN MAINTAINING GENOME STABILITY IN Saccharomyces Cerevisiae

The mismatch repair system (MMR) is an important pathway for maintaining genome stability because it can remove the errors generated while the cell is replicating. If these errors are left uncorrected, they can lead to genomic mutations. Thus, the deficient mismatch repair system is associated with the development of sporadic cancers and degenerative diseases such as Lynch Syndrome. MMR involves a set of proteins including MutSα, MutLα, MutLβ, and MutLγ. MutSα and MutLα play a major role in MMR whereas MutLβ and MutLγ provide minor contributions to this pathway. Recent studies have suggested that MutLβ and MutLγ are involved in the triplet DNA repeat expansion pathway. Our study in Saccharomyces cerevisiae shows important preliminary data of Mlh3 in maintaining genomic stability. We studied its interactions with other proteins involved in the mismatch repair system. Interestingly, Mlh3 interactions with Msh3 and Pol 35 DV suggest that there is a predilection of MutSβ and MutLγ to work in the lagging strand. Additionally, Top1, Mlh3and Msh3our results have shown that these genetic interactions could lead to an increase in mistakes in the MMR pathway. Moreover, it could lead to the suggestion that they are also involved in another pathway such as transcription. Finally, we confirm the involvement of Mlh3 in the resolution of frameshift mutations in the His-7A locus. Even though they are interesting results is too early to make final conclusions. Further analysis needs to be done.

Identiferoai:union.ndltd.org:siu.edu/oai:opensiuc.lib.siu.edu:theses-4027
Date01 August 2022
CreatorsVargas Giron, Tirza Tatiana
PublisherOpenSIUC
Source SetsSouthern Illinois University Carbondale
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses

Page generated in 0.0017 seconds