Return to search

Myeloid-derived suppressor cells in acute myeloid leukaemia

The tumour microenvironment consists of an immunosuppressive niche created by the complex interactions between cancer cells and surrounding stromal cells. A critical component of this environment are myeloid-derived suppressor cells (MDSCs), a heterogeneous group of immature myeloid cells arrested at different stages of differentiation and expanded in response to a variety of tumour factors. MDSCs exert diverse effects in modulating the interactions between immune effector cells and malignant cells. An increased presence of MDSCs is associated with tumour progression, poorer outcomes, and decreased effectiveness of immunotherapeutic strategies. In this project, we sought to quantify and characterise MDSC populations in patients with Acute Myeloid Leukaemia (AML) and delineate the mechanisms underlying their expansion. We have demonstrated that immune suppressive MDSCs are expanded in the peripheral blood and bone marrow of patients with AML. Furthermore, AML cells secrete extra-cellular vesicles (EVs) that skew the tumour microenvironment from antigen-presentation to a tumour tolerogenic environment, through the expansion of MDSCs. We then demonstrated that MDSC expansion is dependent on tumour and EV expression of the oncoproteins MUC1 and c-Myc. Furthermore, we determined that MUC1 signalling promotes c-MYC expression in a microRNA (miRNA) dependent mechanism. This observation lead us to elucidate the critical role of MUC1 in suppressing microRNA-genesis in AML, via the down-regulation of the DICER protein, a key component of miRNA processing machinery. Finally, exploiting this critical pathway, we showed that MDSCs can be targeted by MUC1 inhibition or by the use of a novel hypomethylating agent SGI-110.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:766084
Date January 2017
CreatorsPyzer, Athalia Rachel
PublisherQueen Mary, University of London
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://qmro.qmul.ac.uk/xmlui/handle/123456789/36704

Page generated in 0.002 seconds