Return to search

Epigenetic gene regulation in multiple myeloma and mood disorders

Epigenetics continues to be redefined and new discoveries are likely to revolutionise the field still further. This thesis explores different aspects of how epigenetic regulation of gene expression contributes to human disease. Paper I explores the function of the IKKα kinase in regulating gene expression through the nuclear retinoic acid receptor (RAR). We define a set of genes requiring IKKα for their expression and found recruitment of IKKα to the RAR dependent on structural motifs in its protein sequence. This interplay between the NFκB pathway and nuclear receptor regulated transcription is important to consider when designing therapeutic strategies. Papers II and III focus on the plasma cell malignancy multiple myeloma (MM) and define a gene regulatory circuit defining an underexpressed gene profile in MM dependent on the Polycomb proteins. We provide proof-of-principle that the use of small chemical inhibitors may be operational in reactivating genes silenced by H3K27me3 and that this leads to decreased tumour load and increased survival in the 5T33 in vivo model of MM. We explored the genome-wide distribution of H3K27me3 and H3K4me3, and defined their association with gene expression in freshly-isolated malignant plasma cells from MM patients. Importantly, H3K27me3-marked genes in MM associated with more aggressive stages of the disease and less favourable survival. We present evidence that gene targeting by H3K27me3 is likely to not only involve a small population of tumour cells, but rather represent a common MM profile and further provide a rationale for evaluating epigenetic therapeutics in MM. Paper IV shows that pro-inflammatory gene expression in monocytes of psychiatric patients can be induced in vitro by sodium pump inhibitors, as the steroid hormone ouabain. We suggest that the ouabain-induced gene expression is regulated by an intricate network involving microRNAs, Polycomb and the H3K27me3 demethylase JMJD3. Our data indicates that epigenetic regulators play a role in transmitting cues between intrinsic and/extrinsic stimuli and gene expression in psychiatric illness. This thesis provides novel insights on how seemingly unrelated pathways may converge on transcriptional regulation and evidence that epigenetic modifiers contribute to the pathogenesis of human complex diseases such as multiple myeloma and mood disorders.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-199494
Date January 2013
CreatorsKalushkova, Antonia
PublisherUppsala universitet, Hematologi och immunologi, Uppsala
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationDigital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, 1651-6206 ; 910

Page generated in 0.0016 seconds