Return to search

Etude du collagène VI dans le développement musculaire chez le poisson zèbre : implications pour les myopathies liées au COLVI / Study of collagen VI during the zebrafish muscle development : implications for COLVI-related myopathies

Les muscles sont des structures très organisées qui nous permettent d’effectuer un grand nombre de fonctions. Ils sont constitués de cellules musculaires mais aussi de tissus conjonctifs qui comprennent à la fois des cellules et la matrice extracellulaire. Les interactions entre les cellules musculaires et le tissu conjonctif sont cruciales pour la physiologie du muscle. Le collagène VI (COLVI) est une molécule hétérotrimérique ubiquitaire située dans les tissus conjonctifs, qui est impliquée dans un grand nombre de processus biologiques. Les trimères de COLVI sont composés de 2 chaines dites “courtes” et d’une chaine “longue”. Chez les mammifères, il existe à ce jour, 6 chaines COLVI (deux courtes (α1-2(VI) et 4 chaines longues (α3-6(VI)). Peu de choses sont encore connues à propos de l’assemblage des chaines les plus récemment décrites α4-6(VI) avec les chaines courtes ainsi qu’une la potentielle compensation entre les différentes chaines longues. De plus, chez l’homme, un déficit en α1-3(VI) du fait de mutations dans les gènes correspondants COL6A1-3 conduit à un spectre de maladies neuromusculaires appelées myopathies liées au COLVI. Pendant ma thèse, je me suis intéressée au COLVI durant le développement du poisson-zèbre, un modèle pertinent pour l’étude de maladies neuromusculaires. Dans la première partie de mon travail, j’ai identifié 2 orthologues des chaines α4-6(VI) chez le poisson-zèbre grâce à des études bio-informatiques. Du fait de leur plus grande homologie avec la chaine α4(VI) murine, nous les avons nommés col6a4a et col6a4b. Pour mieux comprendre les rôles des protéines correspondantes, j’ai créé des embryons de poissons-zèbres déficients en COLVI en utilisant l’approche transitoire par oligo morpholino antisens (MOs). Nous avons dessiné des MOs ciblant des sites d’épissage des pré-messagers col6a2, col6a4a et col6a4b, provoquant un saut d’exon et conduisant à un stop prématuré (PTC). J’ai observé une forte diminution des transcrits ciblés. Tous les embryons injectés (morphants) ont présenté des phénotypes morphologiques macroscopiques qui ont conduit à des défauts fonctionnels. Ces phénotypes ont été confirmés au niveau ultra-structural par microscopie électronique. Toutefois, l’analyse de la croissance des motoneurones a permis de mettre en évidence des différences entre ces morphants. Par la suite, j’ai voulu créer deux types de lignées transgéniques, pour pouvoir à la fois étudier le déficit en COLVI à plus long terme (grâce à l’utilisation de Zinc Finger Nucleases) et tester des approches de cribles pharmacologiques (lignée transgénique col6a2 contenant un PTC, fusionné à la GFP). J’ai effectué les clonages nécessaires à l’obtention des différentes constructions, et ces dernières ont été testées in vitro pour validation, lorsque cela était possible. Malheureusement, du fait des forts taux de mortalité in vivo dans les deux cas, nous avons dû nous résoudre à arrêter ces projets. En parallèle, ma connaissance du modèle poisson-zèbre m’a donné l’opportunité, dans le cadre d’une collaboration avec l’équipe de Denis Furling, d’aborder une autre problématique. Ce groupe, qui travaille sur la Dystrophie Myotonique de type 1 (DM1), s’est intéressé à la réexpression d’une isoforme fœtale de la dystrophine retrouvée chez les patients DM1 et à sa possible implication dans la pathologie. L’isoforme fœtale diffère de la forme adulte notamment par l’exclusion de l’exon 78, conduisant à un changement de cadre de lecture et un changement dans la partie 3’ de l’ARN de la dystrophine. Nous avons montré que le maintien de l’isoforme fœtale de la dystrophine était délétère pendant le développement du poisson-zèbre, puisque ces embryons ont présenté un phénotype macroscopique dépendant de la dose de MO injectée ainsi que des troubles de la mobilité. / Muscles are highly organized structures that allow us to perform many functions. They are made from muscular cells but also surrounding tissues that comprise both cells and extracellular matrix. The interactions between them are crucial for the muscle physiology. Collagen VI (COLVI) is a heterotrimeric protein, ubiquitously expressed in connective tissues. It plays multiple biological roles in the maintenance of structural integrity, cellular adhesion, migration and survival. COLVI trimers are formed by the assembly of 2 “short” chains and 1 “long” chain. To date, six COLVI chains are recognized in mammalians with 2 short (α1-2(VI)) and 3 long (α3-6(VI)) chains. Little is known regarding the possible assembly of the newly characterized α4-6(VI) polypeptides with the short chains, and a putative functional compensation between the different long chains. Furthermore, in humans, deficiency in α1-3(VI) due to mutations in the COL6A1-3 genes causes a heterogeneous group of neuromuscular disorders collectively termed COLVI-myopathies. During my Ph.D, I got interested in COLVI during the development of zebrafish, a relevant model of neuromuscular disorders. In the first part of my work, I identified 2 orthologs of the α4-6(VI) chains in zebrafish thanks to bio-informatics studies. In light of their stronger homology with the mammalian α4(VI) chain, we named the genes encoding the novel chains col6a4a and col6a4b. To further unveil the roles of the corresponding proteins, we created COLVI deficient zebrafish embryos using a morpholino antisense oligonucleotides approach (MO) . We chose to design MOs that block splicing of col6a2, col6a4a and col6a4b, thereby creating premature termination codons. As expected, the targeted transcripts levels were drastically reduced, likely due to degradation by the nonsense mediated RNA decay. All morphant embryos presented macroscopic and morphologic phenotypes that overall resulted in functional muscle defects: altered muscle structure detected by birefringence analysis and impaired motility upon touch-evoked escape test. These alterations were confirmed at the ultra-structural level by electron microscopy. Nevertheless, some phenotypical specificities were uncovered between the different col6a2, col6a4a and col6a4b morphants, with the discovery of axon outgrowth defects. In a second part, we wanted to create stable zebrafish lines to study COLVI deficiency at later stages using Zinc Finger Nucleases (ZFN) and to be able to carry out pharmacological screenings with a transgenic line containing col6a2 with a premature codon (PTC) fused to the GFP. I performed clonings to obtain the different constructs. When possible, constructs were tested in vitro. Unfortunately, due to high mortality in vivo in both cases, we had to interrupt these projects. In parallel, my knowledge of the zebrafish model gave me the opportunity to be part of another project, in collaboration with the team of Denis Furling...

Identiferoai:union.ndltd.org:theses.fr/2014PA066416
Date11 December 2014
CreatorsRamanoudjame, Laetitia
ContributorsParis 6, Allamand, Valérie
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench, English
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0023 seconds