Neste trabalho abordamos a teoria da relaxação lagrangeana para resolução de problemas de programação linear inteira, a qual tem sido extensivamente usada e apresentado resultados satisfatórios. Esta abordagem busca reformular um problema inteiro, fazendo deste um problema mais simples. Para tal, relaxa-se algumas restrições, colocando-as como um termo \"penalidade\" na função objetivo, criando assim o chamado \"problema lagrangeano\". É formulado o problema dual, o qual pode ser resolvido pelo método subgradiente ou variações deste. A relaxação lagrangeana tem mostrado muita eficiência também quando usada para gerar limitantes para o algoritmo \"Branch-and-Bound\". Em muitos casos tais limitantes são melhores que os dado pela relaxação linear, gerando uma árvore de tamanho reduzido. Esta técnica lagrangeana tem sido aplicada com sucesso a um grande número de problemas importantes de pesquisa operacional, por exemplo: rotas, localização, sequenciamento, designação, cobertura entre outros. / In this work we survey the lagrangean relaxation theory to solve integer linear programming problems, which has been extensively used and showed satisfactory results. This approach searches a new formulation for the original problem, in which some constraints are removed and replaced as a \"penalty\" term in the objective function. This new problem is cal led \"lagrangean problem\". So, the dual problem is formulated, which can be solved via the subgradient method or its variants. The Lagrangean relaxation has proved to be efficient, when used to obtain bounds for the Branch-and-Bound algorithm. In many cases these bounds are better than those provided by the linear relaxation. In general, it yields a reduced tree. This lagrangean technique has been successfully applied to number of important problems of operational research as, for example: routing, location, scheduling, assignment, set covering and others.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-20022019-110621 |
Date | 15 October 1990 |
Creators | Silva, Helenice de Oliveira Florentino |
Contributors | Arenales, Marcos Nereu |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0022 seconds