Return to search

SOBRE BIFURCAÇÃO E SIMETRIA DE SOLUÇÕES PERIÓDICAS DE EQUAÇÕES DIFERENCIAIS NÃO LINEARES / Not available

Não dsponível / Consider the equation u + u = g(u, p) + µf (t), where p, u are samll parameters, g is an odd smooth nonlinear function of u, f is an even continuous function, either 2π/m-periodic or π/m-odd-harmonic (i.e, f(t + π/m) = -f(t), for every t in R) and m≥ 2 is an integer. Under certain conditions, the small 2π-periodic solutions maintain some symmetry properties of the forcing function f(t), when µ ≠ 0. Some other interesting results describe the changes of the number of such solutions, as p and µ very is a small neighborhood of the origin. It was also proved that a central assumption, which was required in the main results, is generic. The main tool used in this work is the Liapunov-Schmidt Method.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-02042019-100140
Date25 August 1989
CreatorsFurkotter, Monica
ContributorsRodrigues, Hildebrando Munhoz
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguageEnglish
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0024 seconds