Return to search

Micro-pitting and wear characterization for crankshaft roller bearing application

Efficiency of internal combustion engines (ICEs) is far from optimal. Due to the continuously increasing demands on CO2 regulations, automobile industries are forced to improve such efficiency. A crankshaft roller bearing (CSRB) can lead to significant improvements in engine efficiency. However, before this can be implemented into an actual engine, several challenges have to be addressed. One such challenge is the satisfactory performance of CSRB. The current crankshaft limits the service life since it must act as a roller bearing raceway. Therefore, better material properties are required for the use of CSRB in crankshaft applications. In order to select suitable material for the CSRB, development of several characterization methods is required. These methods are based on failure modes that are expected to occur in the actual application. Surface initiated fatigue was shown to be the main failure mode that could lead to complete failure of such a component. The following three characterizations needs are identified: material characterization, lubricant characterization and surface roughness characterization. Two of these methods are partially part of this thesis. Material characterization is required to select the optimal steel candidate for the CSRB component. A method was developed to assess the damage modes on a reference 100Cr6 steel pair under conditions prevalent to CSRB application. However, fully formulated oil was excluded from this investigation and only low-additive oil was employed. Micro-pitting and wear damage modes were identified and were later assessed. Different surface roughness combinations were tested, from where micro-pitting regions were identified. In addition, the effects of surface hardness and sliding on micro-pitting and wear were investigated. It was found that hard steel contacts are more prone to micro-pitting damage compared to soft ones, but less susceptible to mild wear. In addition, higher sliding increases the degree of micro-pitting and wear. Lubricant characterization was performed to optimize the engine oil formulation for rolling contacts. A method to assess different engine oils in terms of micro-pitting and wear damages of rolling contacts was employed. The effect of viscosity, additive chemistry and different mixtures of base oils on aforementioned performance were presented and discussed. In addition, lubricant characterization will provide in-depth knowledge for engine oils’ manufacturers to improve engine oil formulations for satisfactory performances of CSRB design.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ltu-68418
Date January 2018
CreatorsVrček, Aleks
PublisherLuleå tekniska universitet, Maskinelement, Luleå
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationLicentiate thesis / Luleå University of Technology, 1402-1757

Page generated in 0.0057 seconds