Este trabalho consiste de duas partes. Na primeira, desenvolvemos uma teoria de Nielsen equivariante para raizes de G-aplicações $f:X\\to Y$ equivariantes entre G-espaços topológicos Hausdorff, conexos, normais, localmente conexos por caminhos e semilocalmente simplesmente conexos, onde G é um grupo topológico, Na segunda parte, estudamos a questão da realização do G-número de Nielsen de raizes quando este é zero. / This work consists of two parts. In the firs one, we develop an equivariant Nielsen root theory for G-maps. We consider equivariant maps $f:X\\to Y$ between Hausdorff, connected, normal, locally path connected and semilocally simply connected G-spaces, where G is a topological group. In the second part, we study the question of the realization of G-Nielsen root number when it is zero.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-17082009-162658 |
Date | 19 February 2009 |
Creators | Hildebrane Augusto dos Santos |
Contributors | Peter Ngai Sing Wong, Fernanda Soares Pinto Cardona, Fernanda Soares Pinto Cardona, Alice Kimie Miwa Libardi, Oziride Manzoli Neto, Daniel Vendruscolo |
Publisher | Universidade de São Paulo, Matemática, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds