Return to search

Application du Codage Réseau aux Architectures à Garanties de Qualité de Service (QoS) / Network coding : principles and applications

L'intérêt du codage réseau (network coding) pour améliorer le débit ou optimiser l'utilisation de la capacité du réseau a été clairement démontré dans différents contextes. Certains travaux ont notamment montré que le codage réseau permet de diminuer le délai (maximal et moyen) de transmission de bout-en-bout d'un paquet. Ceci est dû au fait que le traitement simultané de plusieurs paquets dans un noeud de codage permet de réduire le temps passé par les paquets dans les files d'attente par rapport au routage classique. Dans cette thèse, nous considérons l'application du codage réseau dans le contexte des réseaux proposant des garanties de qualité de service (QoS). Notre principale contribution est la proposition de trois stratégies de codage réseau assurant un niveau de QoS garantie exprimé en termes de délai de bout-en-bout. La première stratégie, appelée "stratégie orientée réseau" est une stratégie de codage aléatoire, en termes de dates d'arrivée des paquets, permettant de réduire au maximum le temps passé par les paquets dans les files d'attente des routeurs. Le point faible de cette approche, comme toute approche aléatoire, est qu'elle n'est pas totalement fiable. Les deux autres stratégies proposées implémentent une stratégie fiable en utilisant le concept de code en bloc. La première, appelée "stratégie orientée flux" est basée sur la définition classique du codage réseau alors que la seconde, appelée "stratégie de transfert rapide", permet de réduire les temps d'attente des paquets dans les files d'attente en les transférant sans attendre tous les paquets du même bloc. Les délais maximums engendrés par les différentes stratégies ont été évalués au niveau d'un noeud de codage en utilisant le calcul réseau (network calculus). Les bornes de délais de bout-de-bout ont ensuite été calculées pour plusieurs types de réseaux. Dans la plupart des cas, ces bornes sont meilleures que celles obtenues pour le routage classique. Les stratégies de codage réseau fiables et la stratégie de routage ont été implémentées et évaluées par simulation sur les réseaux étudiés précédemment. Les résultats obtenus montrent que les pires cas de délais de bout-en-bout observés ont les mêmes comportements que les bornes maximales théoriques calculées, validant ainsi les stratégies proposées. / The Interest of network coding to improve the throughput or to optimize the use of the network capacity was clearly shown in various contexts. Certain work in particular showed that network coding allows to decrease the end-to-end transmission delay (maximum and average) of a package. This is due to the fact that the processing simultaneous of several packages in a coding node allows to reduce the maximum time spent by the packets in the buffers compared to a classical routing. In this thesis, we consider the application of network coding in the context of the networks providing quality-of-service (QoS) guarantees. Our contributions include the following. First, we propose three network coding strategies ensuring a level of QoS guaranteed expressed in terms of end-in-end delay. The first strategy, called "Network-Oriented Strategy (NOS)", is a random coding strategy. This coding strategy simply consists in combining the inputs packets present in the buffer of a node. It allows minimizing the time spent by the packets in the router's buffers. The weak point of this approach, as any random approach, is that it is not completely reliable. The two other strategies suggested implement a reliable strategy by using the concept of generation. The first, called "Flow-Oriented Strategy (FOS)" is based on the traditional definition of network coding whereas the second, called "Fast Forwarding Strategy (FFS)", allows reducing the packet's buffering delays by transferring them without awaiting all packets of the same generation. The maximum delays generated by different strategies have been evaluated at a coding node level by using network calculus. The end-to-end delay bounds have been then calculated for several types of networks. In most cases, these bounds are better than those obtained for the classical routing. The reliable network coding strategies and the routing strategy have been implemented and evaluated by simulation on networks studied previously. The results obtained show that the worst cases of end-in-end delays observed have the same behaviors as the calculated maximum theoretical bounds, thus validating the suggested strategies

Identiferoai:union.ndltd.org:theses.fr/2009INPT023H
Date12 November 2009
CreatorsMahmino, Ali
ContributorsToulouse, INPT, Fraboul, Christian, Lacan, Jérôme
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text, Text

Page generated in 0.0019 seconds