Abstract
Volatile Organic Compounds (VOCs) in wastewaters from the chemical industry are of major concern because of their environmental and health impacts. The reclamation of VOCs from wastewaters would not only reduce the hazard to the environment but also contribute to an efficient use of resources. The thesis explores the reclamation of n-butanol and dichloromethane from sodium chloride containing mixtures by pervaporation. Another aim was to gain understanding of mass transport phenomena during the pervaporation of multicomponent systems, and the effect of sodium chloride on the pervaporation performance.
In this work, the reclamation of n-butanol and dichloromethane was conducted as a sequence of pervaporation stages which utilised first hydrophobic and then hydrophilic membranes. The objective was to segregate the mixture of n-butanol/dichloromethane/sodium chloride/water into three different streams: a re-use quality concentrate of VOCs, brine, and discharge quality purified water. The effect of the experimental variables, VOCs feed concentration, feed temperature and sodium chloride content on the performance of the pervaporation stages was studied. A statistical design, response surface methodology, was used to further resource efficiency.
The results indicate the potential of pervaporation for the reclamation of n-butanol and dichloromethane from aqueous mixtures. A single step of pervaporation of n-butanol/dichloromethane/sodium chloride/water systems using the CMX-GF-010-D (Celfa) and PERTHESE® 500-1 (P 500-1) membranes does not sufficiently concentrate the VOCs for direct re-use. It is also demonstrated that the electrolyte does not permeate through the membranes and does not affect their separation effectiveness significantly. The pervaporation of the water/dichloromethane/n-butanol system using the hydrophilic poly(vinyl alcohol)-titanium dioxide/polyacrylonitrile/polyphenylene sulfide (PVA-TiO2/PAN/PPS) membrane is effective for dewatering purposes. The membrane shows impermeable features towards dichloromethane in the studied conditions.
The analysis of the mass transport phenomena demonstrates that, under the experimental conditions studied, the resistance towards the mass transport of the compounds through the membrane is mainly exhibited by the membrane itself.
This study also shows the advantage of analysing the effect of temperature on membrane permeation by the permeation activation energy instead of by the apparent activation energy.
Identifer | oai:union.ndltd.org:oulo.fi/oai:oulu.fi:isbn978-951-42-9264-4 |
Date | 13 October 2009 |
Creators | García, V. (Verónica) |
Publisher | University of Oulu |
Source Sets | University of Oulu |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/publishedVersion |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess, © University of Oulu, 2009 |
Relation | info:eu-repo/semantics/altIdentifier/pissn/0355-3213, info:eu-repo/semantics/altIdentifier/eissn/1796-2226 |
Page generated in 0.0023 seconds