Return to search

Unravelling the photochemistry of organometallic N-heterocyclic carbene complexes

This thesis describes the synthesis, characterisation and reactivity of new manganese and rhenium(I) NHC complexes, which have been investigated both thermally and photochemically and the results contrasted with existing phosphine analogues in the literature. Cp’Mn(CO)2(NHC) (NHC = IEt2Me2 1, IMes 2, IiPr2Me2 3 and IPr 4) were synthesised and investigated by TRIR spectroscopy. Loss of CO was observed after 355 nm irradiation to form agostically stabilised intermediates, which reformed the parent species by recombination with CO on the nanosecond timescale. Loss of NHC was not observed, in contrast to Cp’Mn(CO)2(PPh3) which lost both CO and PPh3 upon photolysis. [Re(NHC)(Bpy)(CO)3]BAr4F (NHC = IEt2Me2 5, IMes 6) were synthesised and investigated by TRIR spectroscopy and UV/Vis absorption and emission spectrometry. Inclusion of an NHC altered the excited state manifold of the complexes, favouring population of the 3MLCT over the 3IL excited state. The lowest energy excited state for both 5 and 6 proved to be a 3MLCT excited state at 298 and 77 K. In contrast, [Re(PPh3)(Bpy)(CO)3]BAr4F exhibited 3MLCT at 298 K, but 3IL at 77 K. A series of complexes, M(NHC)(CO)4X and M(NHC)2(CO)3X (M = Re, X = Cl; M = Mn, X = Br) formed upon reaction of the corresponding M(CO)5X species and free NHC. The substitution pattern was dictated by the steric bulk of the NHC. Generation of the corresponding cations by halide abstraction was investigated. M(NHC)2(CO)3X was found to form agostic stabilised species upon halide abstraction by NaBAr4F in CH2Cl2. Under the same conditions, Re(IPr)(CO)4Cl was found to form the dichloromethane complex, [Re(IPr)(CO)4(η1-CH2Cl2)]BAr4F. In C6H5F solution under an atmosphere of dihydrogen, the CH2Cl2 ligand could be displaced by H2 to form the dihydrogen species, [Re(IPr)(CO)4(H2)]BAr4F.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:547630
Date January 2011
CreatorsMartin, Thomas Antony
ContributorsWhittlesey, Michael
PublisherUniversity of Bath
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation

Page generated in 0.002 seconds