Several epidemiological studies found that hypertensive patients have an increased risk to develop kidney cancer. Hyperaldosteronism frequently results in arterial hypertension and contributes to the development and progression of kidney injury, with reactive oxygen species (ROS) playing an important role. ROS are thought to be associated with many pathological conditions such as cancer and other disorders, like cardiovascular complications , which often go along with hypertension. The aim of the present work was to investigate whether the effects of elevated aldosterone concentrations might be involved in the increased cancer incidence of hypertensive individuals. First, the potential capacity of aldosterone to induce oxidative stress and DNA damage was investigated in vitro and in vivo. In LLC-PK1 porcine kidney cells and MDCK canine kidney cells the significant formation of ROS, and especially of superoxide (O2˙ˉ) was assessed. With two genotoxicity tests, the comet assay and the micronucleus frequency test, the DNA damaging potential of aldosterone was quantified. In both genotoxicity tests a dose-dependent increase in aldosterone-induced structural DNA damage was observed. Oxidative stress and DNA damage were prevented by antioxidants, suggesting ROS as a major cause of DNA damage. Furthermore, the oxidatively modified DNA lesion 8-oxo-7,8-dihydro-2´-deoxyguanosine (8-oxodG), was found to be significantly elevated. In kidneys of rats with desoxycorticosterone acetate (DOCA)/salt-induced hypertension, which is a model of severe mineralocorticoid-dependent hypertension, elevated levels of ROS and superoxide were found, compared to kidneys of sham rats. Also DNA strand breaks, measured with the comet assay and double strand breaks, visualized with antibodies against the double strand break-marker gamma-H2AX were significantly elevated in kidneys of DOCA/salt-treated rats. In addition, significantly increased amounts of 8-oxodG were detected. Proliferation of kidney cells was found to be increased, which theoretically enables the DNA damage to manifest itself as mutations, since the cells divide. Second, the effects of aldosterone on the activation of transcription factors and signaling pathways were investigated. A significant activation of the potentially protective transcription factor Nrf2 was observed in LLC-PK1 cells. This activation was triggered by an increase of ROS or reactive nitrogen species (RNS). In response to oxidative stress, glutathione synthesis and detoxifying enzymes, such as the subunits of the glutathione-cysteine-ligase or heme oxygenase 1 were rapidly induced after 4 h. Nevertheless, after 24 h a decrease of glutathione levels was observed. Since ROS levels were still high after 24 h, but Nrf2 activation decreased, this adaptive survival response seems to be transient and quickly saturated and overwhelmed by ROS/RNS. Furthermore, Nrf2 activation was not sufficient to protect cells against oxidative DNA damage, because the amounts of double strand breaks and 8-oxodG lesions steadily rose up to 48 h of aldosterone treatment. The second transcription factor that was time- and dose-dependently activated by aldosterone in LLC-PK1 and MDCK cells was NF-kappaB. Furthermore, a significant cytosolic and nuclear activation of ERK was detected. Aldosterone induced the phosphorylation of the transcription factors CREB, STAT1 and STAT3 through ERK. Third, the underlying mechanisms of oxidant production, DNA damage and activation of transcription factors and signaling pathways were studied. Aldosterone exclusively acted via the MR, which was proven by the MR antagonists eplerenone, spironolactone and BR-4628, whereas the glucocorticoid receptor (GR) antagonist mifepristone did not show any effect. Furthermore, aldosterone needed cytosolic calcium to exert its negative effects. Calcium from intracellular stores and the influx of calcium across the plasma membrane was involved in aldosterone signaling. The calcium signal activated on the one hand, the prooxidant enzyme complex NAD(P)H oxidase through PKC, which subsequently caused the generation of O2˙ˉ. On the other hand, nitric oxide synthase (NOS) was activated, which in turn produced NO. NO and O2˙ˉ can react to the highly reactive species ONOO- that can damage the DNA more severely than the less reactive O2˙ˉ. In the short term, the activation of transcription factors and signaling pathways could be a protective response against aldosterone-induced oxidative stress and DNA damage. However, a long-term NF-B and ERK/CREB/STAT activation by persistently high aldosterone levels could unfold the prosurvival activity of NF-kappaB and ERK/CREB/STAT in aldosterone-exposed cells. DNA damage caused by increased ROS might become persistent and could be inherited to daughter cells, probably initiating carcinogenesis. If these events also occur in patients with hyperaldosteronism, these results suggest that aldosterone could be involved in the increased cancer incidence of hypertensive individuals. / Mehrere epidemiologische Studien haben ein erhöhtes Nierenkrebsrisko bei Patienten mit Bluthochdruck aufgedeckt. Hyperaldosteronismus führt oft zu arteriellem Bluthochdruck und trägt zur Entwicklung und zum Fortschreiten von Nierenschäden bei, wobei reaktive Sauerstoffspezies (ROS) eine wichtige Rolle spielen. Immer häufiger werden ROS mit Krankheitsbildern wie Krebs und kardiovaskulären Erkrankungen, die mit Bluthochdruck einhergehen, in Verbindung gebracht. Das Ziel dieser Arbeit war es, zu untersuchen, ob erhöhte Aldosteronkonzentrationen an dem gesteigerten Krebsrisiko von hypertensiven Patienten beteiligt sein könnten. Zunächst wurde die potentielle Kapazität von Aldosteron, oxidativen Stress und DNA-Schaden in vitro und in vivo induzieren zu können, untersucht. In der Schweine-Nierenzelllinie LLC-PK1 und der Hunde-Nierenzelllinie MDCK wurde die Entstehung von ROS und speziell die Bildung von Superoxid (O2˙ˉ) nachgewiesen. Das gentoxische Potential von Aldosteron wurde mit zwei Genotoxizitätstests, dem Comet Assay und dem Mikrokernfrequenztest bestimmt. In beiden Genotoxizitätstests konnte ein dosis-abhängiger Anstieg des strukturellen DNA-Schadens beobachtet werden. Antioxidantien konnten den oxidativen Stress und die DNA-Schäden verringern, was annehmen lässt, dass ROS die Hauptursache für die Entstehung der DNA-Schäden sind. Darüberhinaus wurden signifikant erhöhte Mengen der oxidativ modifizierten DNA Läsion 8-Oxo-7,8-dihydro-2´-deoxyguanosin (8-oxodG) gefunden. In Nieren von Ratten mit Desoxycorticosteron-Acetat (DOCA) und Salz-induziertem Bluthochdruck, ein Modell für massiven Mineralocorticoid-induzierten Bluthochdruck, wurde ebenfalls eine erhöhte Bildung von ROS und O2˙ˉ in Nieren von DOCA/Salz-Ratten im Vergleich zu Sham-Ratten beobachtet. Auch im Comet Assay erfasste DNA-Strangbrüche und Doppelstrangbrüche, die mit Hilfe von Antikörpern gegen den Doppelstrangbruchmarker gamma-H2AX sichtbar gemacht wurden, waren in den Nieren der DOCA/Salz-behandelten Ratten signifikant erhöht. Weiterhin wurden erhöhte 8-oxodG-Spiegel in DOCA/Salz-Ratten beobachtet. Auch eine erhöhte Proliferationsrate in DOCA/Salz-behandelten Ratten konnte festgestellt werden, was theoretisch dazu führen könnte, dass sich die DNA-Schäden als Mutationen manifestieren, da sich die Zellen teilen. Im zweiten Teil der Arbeit wurde der Einfluss von Aldosteron auf die Aktivierung von Transkriptionsfaktoren und Signalwegen untersucht. Zunächst konnte die Aktivierung des potentiell schützenden Transkriptionsfaktors Nrf2 in LLC-PK1 Zellen mittels electrophoretic mobility shift assay (EMSA) beobachtet werden. Diese Aktivierung wurde durch den Anstieg an ROS und reaktiven Stickstoffspezies (RNS) ausgelöst. Als Antwort auf den oxidativen Stress, wurde die Glutathion-Synthese und detoxifizierende Enzyme, wie die Untereinheiten der Glutathion-Cystein-Ligase oder Hämoxygenase 1, nach 4 Stunden rasch hochreguliert. Nichtsdestotrotz konnte nach 24 Stunden eine Abnahme des Glutathionspiegels festgestellt werden. Da die Konzentration an ROS nach 24 Stunden immer noch signifikant erhöht war, die Aktivierung von Nrf2 allerdings stark zurückgegangen ist, scheint diese adaptive Überlebensstrategie nur kurzfristig, und somit schnell durch ROS/RNS gesättigt zu sein. Weiterhin war die Aktivierung von Nrf2 nicht ausreichend, um die Zellen vor dem durch Aldosteron-induzierten DNA-Schaden zu schützen, da Doppelstrangbrüche, sowie 8-oxodG-Läsionen bei bis zu 48-stündiger Inkubation mit Aldosteron stetig anstiegen. Der zweite Transkriptionsfaktor, der zeit- und dosisabhängig durch Aldosteron aktiviert wurde, war NF-kappaB. Ausserdem wurde die cytosolische und nukleäre Aktivierung von ERK nachgewiesen. Aldosteron induzierte weiterhin die Phosphorylierung der Transkriptionsfaktoren CREB, STAT1 und STAT3 durch ERK. Im dritten Teil dieser Arbeit wurden die zugrundeliegenden Mechanismen der Entstehung von ROS/RNS, des DNA-Schadens und der Aktivierung von Transkriptionsfaktoren untersucht. Aldosteron wirkte ausschließlich über den MR, bewiesen durch Einsatz der MR-Antagonisten Eplerenon, Spironolakton und BR-4628. Der Glucocorticoid-Rezeptor-Antagonist Mifepriston zeigte dagegen keinen Effekt. Weiterhin benötigte Aldosteron cytosolisches Calcium, um seine negativen Effekte auszuüben. Es waren intrazelluäres Calcium, sowie ein Calciuminflux über die Plasmamembran am Aldosteronsignal beteiligt. Einerseits wurde der prooxidative Enzymkomplex NAD(P)H-Oxidase von Calcium durch die Proteinkinase C (PKC) aktiviert, was wiederum zur Bildung von O2˙ˉ führte. Andererseits kam es durch erhöhtes cytosolisches Calcium zur Aktivierung der NO-Synthase (NOS), welche daraufhin Stickoxid (NO) produzierte. NO und O2˙ˉ können zu dem hochreaktiven Peroxynitrit (ONOO-) reagieren, welches die DNA mehr schädigen kann als das etwas weniger reaktive O2˙ˉ. Kurzfristig könnte die Aktivierung der Transkriptionsfaktoren und Signalwege eine schützende Wirkung gegen den durch Aldosteron-induzierten oxidativen Stress und DNA-Schaden in den Zellen haben. Allerdings kann eine länger anhaltende Aktivierung von NF-kappaB und ERK/CREB/STAT durch permanent hohe Aldosteronspiegel zur Induktion einer Überlebensstrategie durch NF-kappaB und ERK/CREB/STAT in Aldosteron-exponierten Zellen führen. Der DNA-Schaden, der durch erhöhte ROS-Spiegel entsteht, könnte persistent und somit an Tochterzellen weitervererbt werden, was eventuell zur Entstehung von Krebs beitragen könnte. Falls diese Effekte auch in Patienten mit Hyperaldosteronismus gefunden werden können, dann könnte Aldosteron an der erhöhten Krebsinzidenz bei Bluthochdruck beteiligt sein.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:4531 |
Date | January 2010 |
Creators | Queisser, Nina |
Source Sets | University of Würzburg |
Language | English |
Detected Language | English |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | https://opus.bibliothek.uni-wuerzburg.de/doku/lic_ohne_pod.php, info:eu-repo/semantics/openAccess |
Page generated in 0.0028 seconds