Perfluororated proton exchange membrane Nafion is the mostly used type of ion exchange membrane in fuel cells. Over the past decades, various studies have been carried out on their structures at different scales, proton conduction mechanism, electrochemical performance, thermal and mechanical properties etc, but many problems are still open, such as the precise picture of proton conduction, degradation and aging of the membrane, even the distribution of pores and channels etc. Because membrane degradation is crucial for practical operation of fuel cells and its understanding offers insights for developing new generation membranes, more and more attention is paid to this issue. Methanol is used in direct methanol fuel cells (DMFC) and alcohols are sensitive to the structure and dynamics of Nafion. In addition, aqueous solutions of alcohols are known to have special mesoscopic structures. Therefore, this thesis employs the aqueous solution of methanol as a probe and investigate the physicochemical mechanism of the degradation of Nafion 117 by means of solid state NMR spectra, relaxation, exchange, diffusion and micro-imaging.
A series of methanol-water binary solution samples covering the entire range of concentration (0% ~ 99%(w/w)) were prepared and the 1H,17O NMR spectra,T1¡BT2, exchange rate, diffusion coefficient of these samples in bulk and in Nafion were measured. In bulk samples, the OH peak of water and that of methanol could be resolved with concentration at or above 40% (w/w). The microscopic and mesoscopic structure and dynamics of methanol solutions (in bulk) were subsequently investigated with variable temperature and diffusion experiments. By measuring the variable temperature 1H and 17O spectra, T1, T2, diffusion and micro-images of the methanol solutions in Nafion 117, the structure and dynamics of methanol solutions in bulk and in Nafion 117 were then compared. Based on these data, the structure an dynamics of Nafion 117 and the correlations between methanol and proton conduction and membrane degradation are discussed. The results of this work provides valuable reference for further understanding the structure, dynamics and degradation of Nafion and their relationship with proton conduction.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0906112-142754 |
Date | 06 September 2012 |
Creators | Cheng, Ren-Hao |
Contributors | Guo-Mei Chen, Shang-Wu Ding, Zhi-Cong Li, Shao-Wei Guo |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0906112-142754 |
Rights | user_define, Copyright information available at source archive |
Page generated in 0.0023 seconds