The research that stems from my doctoral dissertation focuses on addressing essential challenges in developing techniques that utilize solid-state memory technologies (with emphasis on NAND flash memory) from device, circuit, architecture, and system perspectives in order to exploit their true potential for improving I/O performance in high-performance computing systems. These challenges include not only the performance quirks arising from the physical nature of NAND flash memory, e.g., the inability to modify data in-place, read/write performance asymmetry, and slow and constrained erase functionality, but also the reliability drawbacks that limits solid state drives (SSDs) from widely deployed. To address these challenges, I have proposed, analyzed, and evaluated the I/O scheduling schemes, strategies for storage space virtualization, and data protection methods, to boost the performance and reliability of SSDs.
Identifer | oai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-4158 |
Date | 12 June 2013 |
Creators | Wu, Guanying |
Publisher | VCU Scholars Compass |
Source Sets | Virginia Commonwealth University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | © The Author |
Page generated in 0.0021 seconds