Polymer nanofibers used for the construction of triboelectric nanogenerator (TENG) and piezoelectric nanogenerator (PENG) are new and promising technologies for energy recovery. Thanks to the generation of electrical energy based on mechanical movement (deformation), these fibers can find application in the field of self-powered electronic devices. In this work, three nanofibrous structures of materials were prepared by electrostatic spinning: pure polyvinylidene fluoride (PVDF), pure polyamide-6 (PA6) and their mixed combination PVDF / PA6. Non-destructive analyzes such as Raman spectroscopy, FTIR, XPS and electron microscopy were used to study the properties of nanofibers. Analyzes confirmed the positive effect of electrostatic spinning of polymers on the support of the formation of highly polar crystalline -phase in PVDF and , -phase in PA6. The structure arrangement of the nanofibrous material and their defects were observed by scanning electron microscopy (SEM). Furthermore, the contact angle of the wettability of the liquid on the surface was measured for the materials, and the permittivity was measured to monitor the dielectric properties. The described results make the mixed material PVDF / PA6 very promising for further research in the field of nanogenerators and functional textiles.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:442506 |
Date | January 2021 |
Creators | Černohorský, Petr |
Contributors | Sobola, Dinara, Papež, Nikola |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0021 seconds