Return to search

Effective biosensor arrays using gold nanaoparticle-protein conjugates

Developing effective biosensor for proteins, cells, and tissues would enhance the likelihood of early disease detection and treatment. Traditional specificity-based methods are limited by the requirement of prior knowledge of the specific biomarker(s) and high production cost. My research has been focused on developing a rapid and efficient biosensor based on selective interactions using an unbiased array of supramolecular complexes formed between cationic gold nanoparticles and fluorescent proteins. The sensor is capable of discriminating between mammalian cells, as well as healthy and metastatic tissues with significantly small amount of samples, an important requirement for disease diagnosis in clinics. In addition to the cell/tissue state classification, the sensor array is able to identify protein imbalances in undiluted serum, demonstrating the applicability of the sensor array in physiological matrices. Later, I have developed a triple-channel high-throughput sensor to identify chemotherapeutic drug mechanism that would simplify drug discovery. Overall, the sensor array provides a generic tool for bio-profiling, precluding additional processing steps prior to screening and holds great promise for personalized screening of disease states.

Identiferoai:union.ndltd.org:UMASS/oai:scholarworks.umass.edu:dissertations-6873
Date01 January 2013
CreatorsRana, Subinoy
PublisherScholarWorks@UMass Amherst
Source SetsUniversity of Massachusetts, Amherst
LanguageEnglish
Detected LanguageEnglish
Typetext
SourceDoctoral Dissertations Available from Proquest

Page generated in 0.0324 seconds