Le travail exposé dans cette thèse de doctorat présente des expériences à basse température dans le domaine de la spintronique quantique sur des hétérostructures à base de germanium. Tout d’abord, les avantages attendus du germaniumpour la spintronique quantique sont exposés, en particulier la faible interaction hyperfine et le fort couplage spin-orbite théoriquement prédits dans le Ge. Dans un second chapitre, la théorie des boites quantiques et systèmes à double boite sont détaillés, en se focalisant sur les concepts nécessaires à la compréhension des expériences décrites plus tard, c’est-à-dire les effets de charge dans les boites quantiques et double boites, ainsi que le blocage de spin de Pauli. Le troisième chapitre s’intéresse à l’interaction spin-orbite. Son origine ainsi que ses effets sur les diagrammes d’énergie de bande sont discutés. Ce chapitre se concentre ensuite sur les conséquences de l’interaction spin-orbite spécifiques aux gaz bidimensionnels de trous dans des hétérostructures de germanium, c’est-à-dire l’interaction spin-orbite Rashba, le mécanisme de relaxation de spin D’Yakonov-Perel ainsi que l’antilocalisation faible.Le chapitre quatre présente des mesures effectuées sur des nanofils coeur coquillede Ge/Si. Dans ces nanofils une boite quantique se forme naturellement et celui-ci est étudié. Un système à double boite quantiques est ensuite formé par utilisation de grilles électrostatiques, révélant ainsi du blocage de spin de Pauli.Dans le cinquième chapitre sont détaillés des mesures demagneto-conductance de gas de trous bidimensionnels dans des hétérostructures de Ge/SiGe contraints dont le puit quantique se situe à la surface. Ces mesuresmontrent de l’antilocalisation faible. Les temps de transport caractéristiques sont extraits ainsi que l’énergie de séparation des trous 2D par ajustement de courbe de la correction à la conductivité due à l’antilocalisation. De plus, les mesures montrent une suppression de l’antilocalisation par un champ magnétique parallèle au puit quantique. Cet effet est attribué à la rugosité de surface ainsi qu’à l’occupation virtuelle de sous-bandes inoccupées.Finalement, le chapitre six présente des mesures de quantisation de la conductancedans des hétérostructures de Ge/SiGe contraints dont le puit quantique est enterré. Tout d’abord, l’hétérostructure est caractérisée grâce à des mesures de magneto-conductance dans une barre de Hall. Ensuite, un second échantillon dessiné spécialement pour la réalisation de points de contact quantiques est mesuré. Celui-ci montre des marches de conductance. La dépendance en champ magnétique de ces marches est mesurée, permettant ainsi une extraction du facteur gyromagnétique de trous lourds dans du germanium. / This thesis focuses on low temperature experiments in germaniumbased heterostructure in the scope of quantumspintronic. First, theoretical advantages of Ge for quantum spintronic are detailed, specifically the low hyperfine interaction and strong spin orbit coupling expected in Ge. In a second chapter, the theory behind quantum dots and double dots systems is explained, focusing on the aspects necessary to understand the experiments described thereafter, that is to say charging effects in quantum dots and double dots and Pauli spin blockade. The third chapter focuses on spin orbit interaction. Its origin and its effect on energy band diagrams are detailed. This chapter then focuses on consequences of the spin orbit interaction specific to two dimensional germaniumheterostructure, that is to say Rashba spin orbit interaction, D’Yakonov Perel spin relaxation mechanism and weak antilocalization.In the fourth chapter are depicted experiments in Ge/Si core shell nanowires. In these nanowire, a quantumdot formnaturally due to contact Schottky barriers and is studied. By the use of electrostatic gates, a double dot system is formed and Pauli spin blockade is revealed.The fifth chapter reports magneto-transport measurements of a two-dimensional holegas in a strained Ge/SiGe heterostructure with the quantum well laying at the surface, revealing weak antilocalization. By fitting quantumcorrection to magneto-conductivity characteristic transport times and spin splitting energy of 2D holes are extracted. Additionally, suppression of weak antilocalization by amagnetic field parallel to the quantum well is reported and this effect is attributed to surface roughness and virtual occupation of unoccupied subbands.Finally, chapter number six reportsmeasurements of quantization of conductance in strained Ge/SiGe heterostructure with a buried quantumwell. First the heterostructure is characterized by means ofmagneto-conductance measurements in a Hall bar device. Then another device engineered specifically as a quantum point contact is measured and displays steps of conductance. Magnetic field dependance of these steps is measured and an estimation of the g-factor for heavy holes in germanium is extracted.
Identifer | oai:union.ndltd.org:theses.fr/2017GREAY040 |
Date | 14 June 2017 |
Creators | Torresani, Patrick |
Contributors | Grenoble Alpes, De Franceschi, Silvano |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0018 seconds