Return to search

Implementation of Emerging Technologies: Treatment Capability of Peracetic Acid and Ultraviolet Irradiation

abstract: Advanced oxidation processes (AOP’s) are water/wastewater treatment processes simultaneously providing disinfection and potential oxidation of contaminants that may cause long-term adverse health effects in humans. One AOP involves injecting peracetic acid (PAA) upstream of an ultraviolet (UV) irradiation reactor. Two studies were conducted, one in pilot-scale field conditions and another under laboratory conditions. A pilot-scale NeoTech UV reactor (rated for 375 GPM) was used in the pilot study, where a smaller version of this unit was used in the laboratory study (20 to 35 GPM). The pilot study analyzed coliform disinfection and also monitored water quality parameters including UV transmittance (UVT), pH and chlorine residual. Pilot study UV experiments indicate the unit is effectively treating flow streams (>6 logs total coliforms) twice the 95% UVT unit capacity (750 GPM or 17 mJ/cm2 UV Dose). The results were inconclusive on PAA/UV inactivation due to high data variability and field operation conditions creating low inlet concentrations.Escherichia coli (E. coli) bacteria and the enterobacteria phage P22—a surrogate for enteric viruses—were analyzed. UV inactivated >7.9 and 4 logs of E. coli and P22 respectively at a 16.8 mJ/cm2 UV dose in test water containing a significant organics concentration. When PAA doses of 0.25 and 0.5 mg/L were injected upstream of UV at approximately the same UV Dose, the average E.coli log inactivation increased to >8.9 and >9 logs respectively, but P22 inactivation decreased to 2.9 and 3.0 logs, respectively. A bench-scale study with PAA was also conducted for 5, 10 and 30 minutes of contact time, where 0.25 and 0.5 mg/L had <1 log inactivation of E. coli and P22 after 30 minutes of contact time. In addition, degradation of the chemical N-Nitrosodimethylamine (NDMA) in tap water was analyzed, where UV degraded NDMA by 48 to 97% for 4 and 0.5 GPM flowrates, respectively. Adding 0.5 mg/L PAA upstream of UV did not significantly improve NDMA degradation.

The results under laboratory conditions indicate that PAA/UV have synergy in the inactivation of bacteria, but decrease virus inactivation. In addition, the pilot study demonstrates the applicability of the technology for full scale operation. / Dissertation/Thesis / Masters Thesis Civil and Environmental Engineering 2017

Identiferoai:union.ndltd.org:asu.edu/item:44136
Date January 2017
ContributorsCooper, Samantha L. (Author), Abbaszadegan, Morteza (Advisor), Alum, Absar (Committee member), Fox, Peter (Committee member), Arizona State University (Publisher)
Source SetsArizona State University
LanguageEnglish
Detected LanguageEnglish
TypeMasters Thesis
Format116 pages
Rightshttp://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved

Page generated in 0.0024 seconds