N-Nitrosodimethylamine (commonly known as NDMA) is a probable human carcinogen that has been recognized as an emerging drinking water contaminant in recent years. Previous studies have shown that certain N-containing organic compounds may form NDMA in reaction with chlorine or monochloramine and the NDMA yield is affected by the structure of the organic-N compounds, water conditions and treatment parameters. Many amine-based water treatment polymers contain organic-N functional groups and thus have been suspected as potential NDMA precursors in water treatment systems. The purpose of this research was to systematically assess the potential NDMA formation from different structural types of water treatment polymers in reactions with various oxidants and probe the possible factors that influence the NDMA formation. Robust analytical methods for detection of NDMA and the well-known NDMA precursor dimethylamine (DMA) in the reaction samples were established. The cationic polyacrylamide (cationic PAMS), aminomethylated polyacrylamide (Mannich), poly-diallyldimethylammonium chloride (polyDADMAC) and polyamine polymers were evaluated in reactions with nitrite, free chlorine, monochloramine or chlorine dioxide in aqueous solutions at circumneutral pH and room temperature conditions. This study employed high dosages of polymer and oxidant and long reaction time in order to assess the maximum potential to form NDMA. A range of operational parameters that may affect the above reactions were also evaluated.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/36543 |
Date | 26 August 2005 |
Creators | Piyachaturawat, Piti |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Detected Language | English |
Type | Thesis |
Page generated in 0.0018 seconds