Return to search

Frequency-Domain Faraday Rotation Spectroscopy (FD-FRS) for Functionalized Particle and Biomolecule Characterization

In this study, the magnetically-induced vibrations of functionalized magnetic particle suspensions were probed for the development of a novel optical spectroscopy technique. Through this work (1) the frequency-dependence of the faraday rotation in ferrofluids and (2) the extension of this system to elucidating particle size and conformation as an alternative immunossay to costly and labor/time intensive Western Blotting and ELISA has been shown. With its sensitivity and specificity, this method has proven to be a promising multi-functional tool in biosensing, diagnostic, and therapeutic nanomedicine efforts. Due to its ubiquitous nature in all optically-transparent materials, the farady rotation, or circular birefringence, was developed as a robust and sensitive nanoscale biomolecule characterization technique through Brownian relaxation studies of particle suspensions. Current efforts have shown the applicability of this phenomenon in solid, pure liquid, and colloidal samples as well as simultaneous advancements of magnetic nanoparticle research in the magnetometric and magneto-optical regimes. By merging these two fields, a clinically relevant spectroscopy (fd-FRS, Frequency Domain Faraday Rotation Spectroscopy) was developed based on a newly revised model stemming from Debye relazation theory. Through this work, an optical bench with a variable permeability core electromagnet and a frequency-domain lock-in amplifier setup (DC to 20 kHz) have been used to distinguish between Fe3O4-core nanoparticles with functionalization layers of PEG4/PEG8 polymer with future applications involving the Anti-BSA/BSA antibody/antigen couple. Particle concentrations down to 500 nM (magnetic nanoparticles) and 0.01 Volume % (magnetic beads) were studied with diameters ranging from 200 nm to 1μm. currently, the characteristic peak corresponding to the out-of-phase relazation of the suspended particles has been elusive, despite a wide particle size distribution and the use of a balanced photodetector. Future work will involved highly monodisperse samples, faster scan times, and thermal characterization applications of fs-FRS.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:honorstheses1990-2015-2728
Date01 May 2015
CreatorsMurdock, Richard
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceHIM 1990-2015

Page generated in 0.002 seconds