L’objectif de cette étude est de repérer des néologismes à partir de corpus de textes français au moyen d’une méthode semi-automatique. Plus précisément, nous extrayons les néologismes de corpus associés à deux domaines différents, mais traitant du même thème, nous examinons leur répartition et nous les classons selon leur type.
L’étude s’appuie sur l’analyse de corpus traitant des médias sociaux. Le premier aborde les médias sociaux du point de vue de la communication, l’autre le fait du point de vue de l’informatique. Ces points de vue ont été privilégiés, car la communication considère ce qui a trait l’utilisation des médias sociaux et l’informatique aborde leur cartographie. La méthode fait appel à l’extracteur de termes TermoStat pour recenser la terminologie des médias sociaux pour chaque point de vue. Ensuite, nous soumettons les 150 termes les plus spécifiques de chaque point de vue à une méthode de validation divisée en trois tests destinés à valider leur statut néologique : des dictionnaires spécialisés, des dictionnaires de langue générale et un outil de visualisation de n-grammes. Finalement, nous étiquetons les néologismes selon la typologie de Dubuc (2002). L’analyse des résultats de la communication et de l’informatique est comparative.
La comparaison des deux corpus révèle les contributions respectives de la communication et de l'informatique à la terminologie des médias sociaux en plus de montrer les termes communs aux deux disciplines. L’étude a également permis de repérer 60 néologismes, dont 28 sont exclusifs au corpus de la communication, 28 exclusifs à celui de l’informatique et 4 communs aux deux corpus. La recherche révèle également que les composés par subordination sont les types de néologismes les plus présents dans nos résultats. / The objective of this study is to identify the neologisms within corpora of French texts by means of a semi-automatic method. More precisely, we will extract the neologisms from corpora associated to two different areas; however dealing with the same topic, we examine their distribution and we classify them according to their type.
This study is based on an analysis of two corpora within social media. The first one approaches social media from the point of view of communication, and the other approaches it from the point of view of computer science. We prioritize these two points of view being that communication is used as the main source of social media’s utilization and that computer science allows us to understand what is involved to allow for social media to be functional. For this method, we use the TermoStat term extractor in order to take census of terminology for each point of view. We then submit 150 of the most specific terms related to each point of view by way of an exclusion corpus from which we divide into three different tests meant to validate their neological status: specialized dictionaries, general language dictionaries, and a visualization tool for n-grams. Lastly, we label the neologisms according to Dubuc’s (2002) typology. The analysis of the results obtained for communication and computer science uses a comparative method.
The comparison of the two corpora reveals the respective contributions from communication and computer science with respect to the terminology of social medias, as well it demonstrates common terms found within the two disciplines. This examination also allowed for the identification of 60 neologisms; of which 28 are exclusive to the corpus of communication, another 28 are exclusive to that of computer science, and four were found to be common to both corpora. This research also reveals that subordinate compounds are the most present types of neologisms according to our results.
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/23738 |
Date | 08 1900 |
Creators | Charlebois, Julien-Claude |
Contributors | L'Homme, Marie-Claude |
Source Sets | Université de Montréal |
Language | fra |
Detected Language | French |
Type | thesis, thèse |
Format | application/pdf |
Page generated in 0.0019 seconds