Galliform birds (Galliformes) make up together with anseriform birds (Anseriformes) the clade Galloanserae, the sister group of Neoaves and the most basal clade of Neognathae. However, to date no quantitative data on cellular composition of their brains have been available. Here, I used the isotropic fractionator to determine numbers of neurons and non-neuronal cells in specific brain regions of 15 species of galliform birds. I find that cellular scaling rules for galliforms differ starkly from those for songbirds and parrots. When compared to these crown avian lineages, galliform birds feature lower degree of encephalization, a proportionally smaller telencephalon, small telencephalic and dominant cerebellar neuronal fractions, generally lower neuronal densities and larger glia/neuron ratios. Consequently, their brains and especially their forebrains harbor much smaller absolute numbers of neurons than those of equivalently sized songbird and parrots, the fact that undoubtedly constrains cognitive abilities of galliforms. However, this not to say that galliform birds are "bird brains" with low numbers of neurons and a limited ability to learn. Because they have high neuronal densities, their relatively small brains contain about equal numbers of neurons as brains of equivalently sized rodents and...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:388660 |
Date | January 2018 |
Creators | Zhang, Yicheng |
Contributors | Němec, Pavel, Kratochvíl, Lukáš |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0033 seconds