Return to search

Automated Parameter Tuning based on RMS Errors for nonequispaced FFTs

In this paper we study the error behavior of the well known fast Fourier transform for nonequispaced data (NFFT) with respect to the L2-norm. We compare the arising errors for different window functions and show that the accuracy of the algorithm can be significantly improved by modifying the shape of the window function. Based on the considered error estimates for different window functions we are able to state an easy and efficient method to tune the involved parameters automatically. The numerical examples show that the optimal parameters depend on the given Fourier coefficients, which are assumed not to be of a random structure or roughly of the same magnitude but rather subject to a certain decrease.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:ch1-qucosa-160989
Date16 February 2015
CreatorsNestler, Franziska
ContributorsTU Chemnitz, Fakultät für Mathematik
PublisherUniversitätsbibliothek Chemnitz
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:preprint
Formatapplication/pdf, text/plain, application/zip
Relationdcterms:isPartOf:Preprintreihe der Fakultät für Mathematik der TU Chemnitz, Preprint 2015-01

Page generated in 0.0023 seconds