Return to search

Exploring Photocatalytic and Electrocatalytic Reduction of CO2 with Re(I) and Zn(II) Complexes and Attempts to Employ a Novel Carbene Ligand to this Endeavor

With the blend of addressing issues of sustainable energy with the environmental worries regarding emission of greenhouse gases, there is a motivation to target the efficient chemical reduction of CO2. Re(I) integrated photosensitizers and catalysts, synthesized from commercially available ligands, are introduced with the selective CO2 reduction of formic acid, making for a unique class of Re(I) catalysts typically selective for CO as a reduction product. Furthermore, synthesized Zn(II) phosphino aminopyridine complexes are structurally and computationally characterized as well as observed to function as unprecedented electrocatalysts for the reduction of CO2 to formic acid and CO. Lastly, with the importance and popularity of N-heterocyclic carbenes (NHCs) as a class of ligands in the field of organometallic catalysis, six-membered perimidine based carbenes are further explored. Synthesis of a chelating pyridyl-perimidine NHC in addition to potential transition metal catalysts are also attempted.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/41625
Date07 January 2021
CreatorsBerro, Patrick
ContributorsRicheson, Darrin
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0024 seconds