Return to search

Applied Real-Time Integrated Distributed Control Systems: An Industrial Overview and an Implemented Laboratory Case Study

This thesis dissertation mainly compares and investigates laboratory study of different implementation methodologies of applied control systems and how they can be adopted in industrial, as well as commercial, automation applications. Namely the research paper aims to assess or evaluate eventual feedback control loops' performance and robustness over multiple conventional or state-of-the-art technologies in the field of applied industrial automation and instrumentation by implementing a laboratory case study setup: the ball on beam system. Hence, the paper tries to close the gap between industry and academia by: first, conducting a historical study and background information of main evolutional and technological eras in the field of industrial process control automation and instrumentation. Then, some related basic theoretical as well as practical concepts are reviewed in Chapter 2 of the report before displaying the detailed design. After that, the next Chapter, analyses the ball on beam control system problem as the case studied in the context of this research through reviewing previous literature, modeling and simulation. The following Chapter details the proposed design and implementation of the ball on beam case study as if it is under the introduced distributed industrial automation architecture. Finally, Chapter 5 concludes this work by listing several points leaned, remarks, and observations, and stating possible development and the future vision of this research.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc862854
Date08 1900
CreatorsZaitouni, Wael K
ContributorsWan, Yan, Fu, Shengli, Li, Xinrong
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
FormatText
RightsPublic, Zaitouni, Wael K, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved.

Page generated in 0.002 seconds