Return to search

Unsupervised Topic Modeling to Improve Stormwater Investigations

Stormwater investigations are an important part of the detail plan that is necessary for companies and industries to write. The detail plan is used to show that an area is well suited for among other things, construction. Writing these detail plans is a costly and time consuming process and it is not uncommon they get rejected. This is because it is difficult to find information about the criteria you need to meet and what you need to address within the investigation. This thesis aims to make this problem less ambiguous by applying the topic modeling algorithm LDA (latent Dirichlet allocation) in order to identify the structure of stormwater investigations. Moreover, sentences that contain words from the topic modeling will be extracted to give each word a perspective of how it can be used in the context of writing a stormwater investigation. Finally a knowledge graph will be created with the extracted topics and sentences. The result of this study indicates that topic modeling and NLP (natural language processing) can be used to identify the structure of stormwater investigations. Furthermore it can also be used to extract useful information that can be used as a guidance when learning and writing stormwater investigations.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ltu-91251
Date January 2022
CreatorsArvidsson, David
PublisherLuleå tekniska universitet, Institutionen för system- och rymdteknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0017 seconds