No / Although ATP-sensitive potassium (K(ATP)) channel openers, e.g., minoxidil and diazoxide, can induce hair growth, their mechanisms require clarification. Improved drugs are needed clinically. but the absence of a good bioassay hampers research. K(ATP) channels from various tissues contain subtypes of the regulatory sulfonylurea receptor, SUR, and pore-forming, K(+) inward rectifier subunits, Kir6.X, giving differing sensitivities to regulators. Therefore, the in vitro effects of established potassium channel openers and inhibitors (tolbutamide and glibenclamide), plus a novel, selective Kir6.2/SUR1 opener, NNC 55-0118, were assessed on deer hair follicle growth in serum-free median without streptomycin. Minoxidil (0.1-100 microM, p<0.001), NNC 55-0118 (1 mM, p<0.01; 0.1, 10, 100 microM, p<0.001), and diazoxide (10 microM, p<0.01) increased growth. Tolbutamide (1 mM) inhibited growth (p<0.001) and abolished the effect of 10 microM minoxidil, diazoxide and NNC 55-0118; glibenclamide (10 microM) had no effect, but prevented stimulation by 10 microM minoxidil. Phenol red stimulated growth (p<0.001), but channel modulator responses remained unaltered. Thus, deer follicles offer a practical, ethically advantageous in vitro bioassay that reflects clinical responses in vivo. The results indicate direct actions of K(ATP) channel modulators within hair follicles via two types of channels, with SUR 1 and SUR 2, probably SUR2B, sulfonylurea receptors.
Identifer | oai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/4017 |
Date | January 2005 |
Creators | Davies, Gareth C., Thornton, M. Julie, Jenner, Tracey J., Chen, Yi-Ju, Hansen, J.B., Carr, R.D., Randall, Valerie A. |
Source Sets | Bradford Scholars |
Language | English |
Detected Language | English |
Type | Article, No full-text in the repository |
Page generated in 0.0022 seconds