Return to search

Predictive Maintenance of NOx Sensor using Deep Learning : Time series prediction with encoder-decoder LSTM

In automotive industry there is a growing need for predicting the failure of a component, to achieve the cost saving and customer satisfaction. As failure in a component leads to the work breakdown for the customer. This paper describes an effort in making a prediction failure monitoring model for NOx sensor in trucks. It is a component that used to measure the level of nitrogen oxide emission from the truck. The NOx sensor has chosen because its failure leads to the slowdown of engine efficiency and it is fragile and costly to replace. The data from a good and contaminated NOx sensor which is collated from the test rigs is used the input to the model. This work in this paper shows approach of complementing the Deep Learning models with Machine Learning algorithm to achieve the results. In this work LSTMs are used to detect the gain in NOx sensor and Encoder-Decoder LSTM is used to predict the variables. On top of it Multiple Linear Regression model is used to achieve the end results. The performance of the monitoring model is promising. The approach described in this paper is a general model and not specific to this component, but also can be used for other sensors too as it has a universal kind of approach.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:bth-18668
Date January 2019
CreatorsKumbala, Bharadwaj Reddy
PublisherBlekinge Tekniska Högskola, Institutionen för tillämpad signalbehandling
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0018 seconds