Return to search

Análise da distribuição do número de operações de resolvedores SAT / Distribution\'s analysis of operations\'s number of SAT solvers

No estudo da complexidade de problemas computacionais destacam-se duas classes conhecidas como P e NP. A questao P=NP e um dos maiores problemas nao resolvidos em Ciencia da Compu- tacao teorica e Matematica contemporanea. O problema SAT foi o primeiro problema reconhecido como NP-completo e consiste em verificar se uma determinada formula da logica proposicional clas- sica e ou nao satisfazivel. As implementacoes de algoritmos para resolver problemas SAT sao conhe- cidas como resolvedores SAT (SAT Solvers). Existem diversas aplicacoes em Ciencia da Computacao que podem ser realizadas com SAT Solvers e com outros resolvedores de problemas NP-completos que podem ser reduzidos ao SAT como por exemplo problemas de coloracao de grafos, problemas de agendamento e problemas de planejamento. Dentre os mais eficientes algoritmos para resolvedores de SAT estao Sato, Grasp, Chaff, MiniSat e Berkmin. O Algoritmo Chaff e baseado no Algoritmo DPLL o qual existe a mais de 40 anos e e a estrategia mais utilizada para os Sat Solvers. Essa dissertacao apresenta um estudo aprofundado do comportamento do zChaff (uma implementacao muito eficiente do Chaff) para saber o que esperar de suas execucoes em geral . / In the study of computational complexity stand out two classes known as P and NP. The question P = NP is one of the greatest unsolved problems in theoretical computer science and contemporary mathematics. The SAT problem was first problem recognized as NP-complete and consists to check whether a certain formula of classical propositional logic is satisfiable or not. The implementations of algorithms to solve SAT problems are known as SAT solvers. There are several applications in computer science that can be performed with SAT solvers and other solvers NP- complete problems can be reduced to SAT problems such as graph coloring, scheduling problems and planning problems. Among the most efficient algorithms for SAT solvers are Sato, Grasp, Chaf, MiniSat and Berkmin. The Chaff algorithm is based on the DPLL algorithm which there is more than 40 years and is the most used strategy for Sat Solvers. This dissertation presents a detailed study of the behavior of zChaff (a very efficient implementation of the Chaff) to know what to expect from their performance in general.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-21012013-220441
Date28 February 2012
CreatorsPoliana Magalhães Reis
ContributorsMarcelo Finger, Fabio Gagliardi Cozman, Flavio Soares Correa da Silva
PublisherUniversidade de São Paulo, Ciência da Computação, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0023 seconds