Return to search

Study of Single and Ensemble Machine Learning Models on Credit Data to Detect Underlying Non-performing Loans

In this paper, we try to compare the performance of two feature dimension reduction methods, the LASSO and PCA. Both simulation study and empirical study show that the LASSO is superior to PCA when selecting significant variables. We apply Logistics Regression (LR), Artificial Neural Network (ANN), Support Vector Machine (SVM), Decision Tree (DT) and their corresponding ensemble machines constructed by bagging and adaptive boosting (adaboost) in our study. Three experiments are conducted to explore the impact of class-unbalanced data set on all models. Empirical study indicates that when the percentage of performing loans exceeds 83.3%, the training models shall be carefully applied. When we have class-balanced data set, ensemble machines indeed have a better performance over single machines. The weaker the single machine, the more obvious the improvement we can observe.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-297080
Date January 2016
CreatorsLi, Qiongzhu
PublisherUppsala universitet, Statistiska institutionen
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0382 seconds