The master´s thesis is focused on advanced scoring of sleep data, which was performed using deep neural network. Heart rate data and the movement information were used for scoring measured using an Apple Watch smartwatch. After appropriate pre-processing, this data serves as input parameters to the designed networks. The goal of the LSTM network was to classify data into either two groups for sleep and wake or into three groups for wake, Non-REM and REM. The best results were achieved by network doing classification of sleep vs. wake using the accelerometer. The statistical evaluation of this best-designed network reached the values of sensitivity 71,06 %, specificity 57,05 %, accuracy 70,01 % and F1 score 81,42 %.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:442494 |
Date | January 2021 |
Creators | Jagošová, Petra |
Contributors | Novotná, Petra, Ronzhina, Marina |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0022 seconds