Return to search

Disposal Dynamics from the Vicinity of Near Rectilinear Halo Orbits in the Earth-Moon-Sun System

<div>After completion of a resupply mission to NASA’s proposed Lunar Orbital Platform - Gateway, safe disposal of the Logistics Module is required. One potential option is disposal to heliocentric space. This investigation includes an exploration of the trajectory escape dynamics from an Earth-Moon L2 Near Rectilinear Halo Orbit (NRHO). The effects of the solar gravitational perturbations are assessed in the Bicircular Restricted 4-Body Problem (BCR4BP), as defined in the Earth-Moon rotating frame and in the Sun-B1 rotating frame, where B1 is the Earth-Moon barycenter. Disposal trajectories candidates are classified in three outcomes: direct escape, in direct escapes and captures.</div><div>Characteristics of each outcome is defined in terms of three parameters: the location of the apoapses within to the Sun-B1 rotating frame, a characteristic Hamiltonian value, and the osculating eccentricity with respect to the Earth-Moon barycenter. Sample trajectories are presented for each outcome. Low-cost disposal options are introduced.</div>

  1. 10.25394/pgs.7413359.v1
Identiferoai:union.ndltd.org:purdue.edu/oai:figshare.com:article/7413359
Date17 January 2019
CreatorsKenza K. Boudad (5930555)
Source SetsPurdue University
Detected LanguageEnglish
TypeText, Thesis
RightsCC BY 4.0
Relationhttps://figshare.com/articles/Disposal_Dynamics_from_the_Vicinity_of_Near_Rectilinear_Halo_Orbits_in_the_Earth-Moon-Sun_System/7413359

Page generated in 0.0017 seconds