Dans ce travail, le problème de conception de contrôleurs flous est étudié. Dans une première partie, on présente un état de l'art sur les techniques utilisées à savoir les algorithmes génétiques et ses différentes variantes, les réseaux de neurones, la logique floue et leurs hybridations. Prenant appui sur cet état de l'art nous proposons une première méthode de conception des contrôleurs flous de Mamdani par algorithmes génétiques simples. Cette méthode est en suite améliorée par l'emploi des algorithmes génétiques hiérarchisés. Ces derniers permettent par le biais de la structure de leurs chromosomes, une meilleure optimisation des paramètres du contrôleur tout en éliminant les règles incohérentes qui peuvent se présenter, comme pour la première méthode, à la fin du processus d'optimisation. La dernière méthode proposée concerne la synthèse des contrôleurs flous de Sugeno. Elle est basée sur une procédure d'apprentissage hybride qui se déroule en deux étapes. Durant la première étape, le contrôleur flou est représenté sous forme d'un réseau de neurones multicouches dont les paramètres sont optimisés par l'algorithme de rétropropagation. Dans la deuxième étape, les paramètres obtenus à l'issue de la première phase sont extraits et optimisés par le NSGA-II suivant un codage hiérarchisé. L'ensemble des ces méthodes est appliqué pour la conduite d'un procédé de fermentation alcoolique en mode continu.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00392473 |
Date | 22 April 2009 |
Creators | Guenounou, Ouabib |
Publisher | Université Paul Sabatier - Toulouse III |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0012 seconds