Return to search

Atomic scale studies of thermally aged pressure vessel steels

In Pressurised Water Reactors, the reactor pressure vessel (RPV) is considered a life limiting component due to the degradation of its mechanical properties. Nano-scale Cu-enriched precipitates are known to cause embrittlement in the form of increases in hardness and the ductile-to-brittle transition temperature. The effect of irradiation on the RPV is the dominant contributor to this embrittlement. This is due to the increased mobility of Cu from the high number of vacancies, and the matrix damage providing many heterogeneous nucleation sites. However, there are also thermal effects which may be difficult to separate from the irradiation effects. To understand the contribution of the long term thermal ageing to RPV embrittlement a series of weld and plate materials containing systematic variations of Ni and Cu has been thermally aged for times up to 100,000 hrs at 330 degrees C, 365 degrees C and 405 degrees C. Microstructural characterisation using Atom Probe Tomography has been performed. Complimentary Monte-Carlo simulations have been used to investigate the early stages of formation of Cu-enriched precipitates. Thermal ageing produces a high number density of nano-scale Cu-enriched precipitates. These nanometre precipitates have a Ni-Mn-Si rich interface which was found to be wider with increased precipitate size, lower ageing temperature and higher bulk Ni content. This interface reduces the interfacial energy of the Cu-enriched precipitates through a combination of the minimising of unfavourable Fe-Cu bonds and reduction in lattice strain. The matrix Cu levels after ageing for 90,000 - 100,000 hrs were found to be around 0.06 - 0.07 at.%, close to the expected solubility limits for Cu in Fe. The Fe content of the precipitates has been characterised and found to be higher at lower ageing temperature and for smaller precipitate sizes. Cu precipitation and solute segregation at dislocations were observed, particularly in the SG steels aged at higher temperatures where the supersaturation is lowest. Movies were produced from the Kinetic Monte-Carlo modelling (see accompanying DVD) and along with other analyses indicated that sub-critical Ni and Mn clusters may be active in the formation of Cu-enriched precipitates. This mechanism appears to occur in both the high and low Ni steels. Thus, the higher number density of larger precipitates observed with increased bulk Ni content is thought to be a consequence of the greater number of sub-critical Ni-Mn clusters providing more nucleation sites. A small number of grain boundaries were examined. Segregation of many solute species to them was observed, which is thought to result from a multi-element co-segregation process. Ni-Mn-Si precipitates were observed at grain boundaries and dislocations in the high Ni steels with high and low Cu levels. These are consistent with similar phases in found in irradiated high Ni steels. In the high Cu steels these particles were much larger and associated with Cu-enriched precipitates.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:597105
Date January 2013
CreatorsStyman, Paul David
ContributorsSmith, George D. W. ; Hyde, Jonathan M.
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://ora.ox.ac.uk/objects/uuid:2fb8718a-4731-4bb1-bec5-3afffa14c5a1

Page generated in 0.0015 seconds