Return to search

Engineering coherent control of quantum information in spin systems

Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Nuclear Science and Engineering, 2007. / Includes bibliographical references (p. 151-161). / Quantum Information Processing (QIP) promises increased efficiency in computation. A key step in QIP is implementing quantum logic gates by engineering the dynamics of a quantum system. This thesis explores the requirements and methods of coherent control in the context of magnetic resonance for: (i) nuclear spins of small molecules in solution and (ii) nuclear and electron spins in single crystals. The power of QIP is compromised in the presence of decoherence. One method of protecting information from collective decoherence is to limit the quantum states to those respecting the symmetry of the noise. These decoherence-free subspaces (DFS) encode one logical quantum bit (qubit) within multiple physical qubits. In many cases, such as nuclear magnetic resonance (NMR), the control Hamiltonians required for gate engineering leak the information outside the DFS, whereby protection is lost: It is shown how one can still perform universal logic among encoded qubits in the presence of leakage. These ideas are demonstrated on four carbon-13 spins of a small molecule in solution. Liquid phase NMR has shortcomings for QIP, like the lack of strong measurement and low polarization. These two problems can be addressed by moving to solid-state spin systems and incorporating electron spins. If the hyperfine interaction has an anisotropic character, it is proven that the composite system of one electron and N nuclear spins (le-Nn) is completely controllable by addressing only to the electron spin. This 'electron spin actuator' allows for faster gates between the nuclear spins than would be achievable in its absence. In addition, a scheme using logical qubit encodings is proposed for removing the added decoherence due to the electron spin. Lastly, this thesis exemplifies arbitrary gate engineering in a le-ln ensemble solid-sate spin system using a home-built ESR spectrometer designed specifically for engineering high-fidelity quantum control. / by Jonathan Stuart Hodges. / Ph.D.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/44781
Date January 2007
CreatorsHodges, Jonathan Stuart
ContributorsDavid G. Cory., Massachusetts Institute of Technology. Dept. of Nuclear Science and Engineering., Massachusetts Institute of Technology. Dept. of Nuclear Science and Engineering.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format161 p., application/pdf
RightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0015 seconds