In this dissertation, we investigate the Riccati diagonal stability and explore some extensions of this notion. Riccati diagonal stability plays an important role in the stability analysis of linear time-delay systems. It is known that if a linear time-delay system is Riccati diagonally stable then it admits a diagonal Lyapunov-Krasovskii functional. The existence of such a functional implies the asymptotic stability of the linear time-delay system. This diagonal stability problem has other applications in applied areas such as physical sciences and population dynamics. We also study the Lyapunov diagonal stability, which has a clear connection to the Riccati diagonal stability. Using a separation theorem, we first provide new proofs for some existing results on the Lyapunov-type diagonal stability. We also construct a new, shorter, and more transparent proof for a well-known result by Kraaijevanger that gives explicit conditions for the Lyapunov diagonal stability on matrices in $\mathbb{R}^{3 \times 3}$. In addition, we give several necessary and sufficient conditions for matrices in $\mathbb{R}^{3 \times 3}$ to be Lyapunov diagonally stable. Furthermore, we present an extension of the so-called Riccati diagonal stability to the Riccati $\alpha$-scalar stability. We derive two new characterizations regarding the Riccati $\alpha$-scalar solution of the Riccati matrix inequality so as to expand and broaden the relevant existing results. We also generalize this notion to consider a common $\alpha$-scalar solution for a family of Riccati matrix inequalities. We shall refer to this new generalization as common Riccati $\alpha$-scalar stability. As an application for the main results, we further explore families of block triangular matrices. Finally, motivated by recent developments, we formulate the problem of Riccati $\alpha$-stability. We present a necessary and sufficient condition for this type of stability and study the connection between Riccati $\alpha$-stability of a pair of $\alpha$-block matrices and Riccati stability of the diagonal block pairs. Moreover, we generalize the Riccati $\alpha$-stability by considering a family of pairs of $\alpha$-block matrices and give a new characterization for this new case.
Identifer | oai:union.ndltd.org:siu.edu/oai:opensiuc.lib.siu.edu:dissertations-3095 |
Date | 01 May 2023 |
Creators | Algefary, Ali Abdullah |
Publisher | OpenSIUC |
Source Sets | Southern Illinois University Carbondale |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Dissertations |
Page generated in 0.0021 seconds