Return to search

The functional study of Na+/Ca2+ exchanger in vascular smooth muscle cells

Na+/Ca2+ exchanger (NCX) is a membrane protein which can mediate either Ca2+ entry (reverse mode) or exit (forward mode) in cells. As one of the major Ca2+ transport systems, NCX is postulated to play a critical role in the vascular smooth muscle cell. The aims of the present study are to firstly demonstrate the functional existence of NCX in vascular smooth muscle (including aorta and arteriole); to clarify the modulation of NCX; to explore the selectivity of NCX inhibitor KB-R7943; and lastly to investigate the role of NCX in the myogenic response. KB-R7943 has been widely used as a NCX inhibitor. The study investigated its pharmacological actions in rat aorta on a variety of Ca2+ dependent systems. Rat aortic rings were used. The constriction to low extracellular [Na+] is a functional response mediated by NCX operating in reverse mode. The data demonstrate that 10 µM KB-R7943 inhibited L-type Ca2+ channel, the capacitative Ca2+ entry and  adrenergic receptor pathway. Nevertheless, KB-R7943 can be used as a selective inhibitor of NCX at the lower concentration of 1 µM in rat aortic rings. The study investigated whether the endothelium could modulate NCX in rat aortic rings. Lowering extracellular [Na+] to 1.18 mM induced constriction in endothelium denuded rat aortic rings, but only a small constriction in endothelium intact rat aortic rings. In endothelium intact rat aortic rings, the guanylate cyclise inhibitor ODQ (1 µM) and the nitric oxide synthase inhibitor L-NAME (50 µM) greatly amplified the vasoconstriction to lowering extracellular [Na+], but had no effect when the endothelium was removed. The adenylate cyclise inhibitor SQ 22536 (100 µM) and the cyclooxygenase inhibitor indomethacin (10 M) showed no significant effect on the low-Na+ induced vasoconstriction in either endothelium denuded or intact aortic rings. The results suggest that endothelium modulated the NCX operation via the nitric oxide/guanylate cyclase, not the adenylate cyclase system; further prostanoids including prostacyclin was not involved. The interaction between nitric oxide and NCX was furt her explored using the nitric oxide donor sodium nitroprusside. Endothelium denuded rat aortic rings were preconstricted to the same extent with either low Na+ (1.18 mM), or the thromboxane A2 agonist U46619 (0.1 µM) or high K+ (80 mM). The vasorelaxation of SNP (30 nM) in low Na+ constriction was significantly larger compared to other agents. This indicates that NO has a special antagonism of low Na+ constriction and a hypothesis is proposed involving Na+/K+ ATPase. The investigation of NCX is mainly conducted in large vessels; much less evidence is available for small resistance vessels. The study investigated the role of NCX on myogenic response in pressurized cremaster muscle arterioles. Reducing extracellular [Na+] resulted in graded vasoconstriction which was inhibited by NCX inhibitor SEA0400 (1 µM). Myogenic vasoconstriction and the concomitant rise in internal [Ca2+] were induced by a transmural pressure increase from 70 to 120 mmHg which was prevented by NCX inhibitor: SEA0400 (1 µM). In conclusion, the present study suggests that NCX contributes to the myogenic response in cremaster arteriole.

Identiferoai:union.ndltd.org:ADTP/210345
Date January 2007
CreatorsZhao, Jun, e52677@ems.rmit.edu.au
PublisherRMIT University. Medical Sciences
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://www.rmit.edu.au/help/disclaimer, Copyright Jun Zhao

Page generated in 0.0017 seconds