Machine learning is a method in data science for analysing large data sets and extracting hidden patterns and common characteristics in the data. Corporations often have access to databases containing great amounts of data that could contain valuable information. Navetti AB wants to investigate the possibility to automate their product categorisation by evaluating different types of machine learning algorithms. This could increase both time- and cost efficiency. This work resulted in three different prototypes, each using different machine learning algorithms with the ability to categorise products automatically. The prototypes were tested and evaluated based on their ability to categorise products and their performance in terms of speed. Different techniques used for preprocessing data is also evaluated and tested. An analysis of the tests shows that when providing a suitable algorithm with enough data it is possible to automate the manual categorisation. / Maskininlärning är en metod inom datavetenskap vars uppgift är att analysera stora mängder data och hitta dolda mönster och gemensamma karaktärsdrag. Företag har idag ofta tillgång till stora mängder data som i sin tur kan innehålla värdefull information. Navetti AB vill undersöka möjligheten att automatisera sin produktkategorisering genom att utvärdera olika typer av maskininlärnings- algoritmer. Detta skulle dramatiskt öka effektiviteten både tidsmässigt och ekonomiskt. Resultatet blev tre prototyper som implementerar tre olika maskininlärnings-algoritmer som automatiserat kategoriserar produkter. Prototyperna testades och utvärderades utifrån dess förmåga att kategorisera och dess prestanda i form av hastighet. Olika tekniker som används för att förbereda data analyseras och utvärderas. En analys av testerna visar att med tillräckligt mycket data och en passande algoritm så är det möjligt att automatisera den manuella kategoriseringen.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-209031 |
Date | January 2017 |
Creators | Stefan, Vasic, Nicklas, Lindgren |
Publisher | KTH, Data- och elektroteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-STH ; 2017:39 |
Page generated in 0.0019 seconds