This thesis deals with mining of relevant information from documents and automatic splitting of multiple documents merged together. Moreover, it describes the design and implementation of software for data mining from documents and for automatic splitting of multiple documents. Methods for acquiring textual data from scanned documents, named entity recognition, document clustering, their supportive algorithms and metrics for automatic splitting of documents are described in this thesis. Furthermore, an algorithm of implemented software is explained and tools and techniques used by this software are described. Lastly, the success rate of the implemented software is evaluated. In conclusion, possible extensions and further development of this thesis are discussed at the end.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:385929 |
Date | January 2018 |
Creators | Jarolím, Jordán |
Contributors | Bartík, Vladimír, Kreslíková, Jitka |
Publisher | Vysoké učení technické v Brně. Fakulta informačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0018 seconds