Return to search

Magnetic fluids under applied field studied by light scattering and microscopy

The optical response of several magnetic nanoparticle dispersions is studied by angle resolved transmittance at wavelength of 600 nm in zero-field and under an applied magnetic field of 0.1 T, with the purpose of exploring to what extent this could be used as a method of monitoring the colloidal dispersions. In an external magnetic field, magnetic particles will start to order into needle-like structures aligned with the field, which was observed by microscopy. This will change the light scattering caused by the particles. Results showed a clear effect from applying the magnetic field by a dip in the transmitted intensity at angles around 3-5 degrees. The scattering is compared to that of a homogeneous infinite cylinder and theoretical explanations to the effect are discussed. Spectrophotometry at wavelengths between 300-1100 nm is performed and compared with calculations from Kubelka-Munk approximation to give a first characterization of the particle dispersions. Particles used in this project are magnetite, Fe3O4, and maghemite, gamma-Fe2O3, nanoparticles with sizes ranging from 5-250 nm.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-326095
Date January 2017
CreatorsBraesch-Andersen, Anna
PublisherUppsala universitet, Fasta tillståndets fysik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationUPTEC Q, 1401-5773 ; 17004

Page generated in 0.0022 seconds