Return to search

Νανο-διηλεκτρικά εποξειδικής ρητίνης- BaTiO3 : ανάπτυξη, ηλεκτρική απόκριση και λειτουργικότητα

Τα σύνθετα συστήματα πολυμερικής μήτρας – κεραμικών εγκλεισμάτων φαίνεται ότι μπορούν να αποτελέσουν μία νέα γενιά υλικών υψηλού τεχνολογικού ενδιαφέροντος. Από την άλλη μεριά η σημασία των νανουλικών και νανοδομημένων υλικών είναι ευρέως αποδεκτή στις μέρες μας, τόσο σε επίπεδο βασικής έρευνας όσο και σε τεχνολογικό επίπεδο. Το σύγχρονο αυτό ερευνητικό πεδίο περιλαμβάνει τη μελέτη των νανοσύνθετων ή πολυφασικών υλικών, στα οποία μια ή περισσότερες από τις χωρικές διαστάσεις κάποιας φάσης βρίσκεται στην περιοχή των νανομέτρων (1 nm = 10-9 m = 10 ). Αυτό που ξεχωρίζει τα νανοσύνθετα από τα άλλα συμβατά σύνθετα υλικά είναι η ικανότητα τους να συνδυάζουν ιδιότητες, οι οποίες είναι απαγορευτικές για τα παραδοσιακά υλικά, αλλά και η μεγάλη λειτουργικότητα που παρουσιάζουν. Η διασπορά μίκρο- και νάνο-κεραμικών εγκλεισμάτων στο εσωτερικό πολυμερούς, οδηγεί σε σύνθετα συστήματα με βελτιωμένη μηχανική απόκριση, που όμως διατηρούν την ηλεκτρική συμπεριφορά των εγκλεισμάτων. Υλικά υψηλής ηλεκτρικής διαπερατότητας (high-K materials) είναι απαραίτητα σε πολλές εφαρμογές της ηλεκτρονικής, επειδή είναι σε θέση να μειώνουν τα ρεύματα διαρροής, ενώ παράλληλα λειτουργούν και ως ενσωματωμένοι μικρο-πυκνωτές. Σύνθετα πολυμερικά υλικά που ενσωματώνουν σιδηροηλεκτρικά κεραμικά στοιχεία παρουσιάζουν μεγαλύτερο ενδιαφέρον καθώς, η ηλεκτρική τους απόκριση πέραν των αναμενόμενων εξαρτήσεων (περιεκτικότητα, γεωμετρία και τρόπος διασποράς των εγκλεισμάτων) σχετίζεται και με τη θερμοκρασιακά ελεγχόμενη μετάβαση των εγκλεισμάτων από τη σιδηροηλεκτρική στην παραηλεκτρική φάση. Τέτοιου είδους λειτουργικά σύνθετα, αναφέρονται συχνά και ως ευφυή συστήματα.
Στην παρούσα εργασία παρασκευάσθηκαν συστήματα πολυμερικής μήτρας – μικρο- και νανο-σωματιδίων κεραμικού BaTiO3 και στη συνέχεια εξετάσθηκαν οι διηλεκτρικές τους ιδιότητες, με παραμέτρους την περιεκτικότητα σε BaTiO3, τη θερμοκρασία και τη συχνότητα του εφαρμοζόμενου πεδίου.
Η διηλεκτρική φασματοσκοπία (Broadband Dielectric Spectroscopy) έχει αποδειχθεί ως ένα ισχυρό εργαλείο για την έρευνα της μοριακής κινητικότητας, των αλλαγων φάσης, των μηχανισμών αγωγιμότητας και των διεπιφανειακών φαινομένων στα πολυμερή και τα σύνθετα πολυμερικά συστήματα. Η διηλεκτρική απόκριση των νανοσυνθέτων εξετάστηκε με τη βοήθεια της διηλεκτρικής φασματοσκοπίας (BDS) στο εύρος συχνοτήτων 10-1-10 7 Hz και στο διάστημα θερμοκρασιών από 30οC έως 160οC. Από τα πειραματικά αποτελέσματα προκύπτει πως παρατηρούνται διηλεκτρικές χαλαρώσεις που οφείλονται τόσο στην πολυμερική μήτρα, όσο και στην ενισχυτική φάση. Τρεις διακριτοί τρόποι χαλάρωσης καταγράφηκαν στα φάσματα των συστημάτων που μελετήθηκαν και αποδίδονται στη διεπιφανειακή πόλωση (IP) μήτρας/εγκλεισμάτων, στην υαλώδη μετάβαση (α - χαλάρωση) των πολυμερών και στην κίνηση πλευρικών πολικών ομάδων (β - χαλάρωση) των αλυσίδων.
Η λειτουργική συμπεριφορά των μίκρο- και νάνο-σύνθετων βασίζεται στην μετάβαση “αταξίας”- “τάξης” που παρατηρείται στο BaTiO3 στην κρίσιμη θερμοκρασία Curie (~130oC). Η μετάβαση από την σιδηροηλεκτρική φάση στην παραηλεκτρική μελετήθηκε τόσο μέσω της Διηλεκτρικής Φασματοσκοπίας όσο και με φάσματα ακτίνων-Χ (XRD). Η μεταβολή της πόλωσης και η δημιουργία κορυφής στα διαγράμματα του πραγματικού μέρους της ηλεκτρικής διαπερατότητας με τη θερμοκρασία μπορεί να αποτελέσει τη βάση ανάπτυξης ευφυών συστημάτων και νανο-διατάξεων καθώς δίνεται η δυνατότητα ελέγχου της αποθηκευόμενης ηλεκτρικής ενέργειας στη νανοκλίμακα και επιτυγχάνεται η λειτουργία ρυθμιστή πόλωσης.
Τέλος, με την εισαγωγή της Διηλεκτρικής Συνάρτησης Ενίσχυσης διερευνάται η απόκριση των σύνθετων συστημάτων και προσδιορίζεται η βέλτιστη λειτουργική συμπεριφορά και η βέλτιστη συμπεριφορά ως προς την αποθήκευση ενέργειας. / Ceramic-polymer composites consisting of ferroelectric crystal particles, homogeneously distributed, in an polymer host represent a novel class of materials, with several interesting properties.
The impact of nanomaterials and nanostructured materials is well known and widely accepteble in our days, not only in the basic research level but also in the area of technological applications. This modern field of scientific research includes the study of nano – composites or multiphase materials. Multiphase materials have at least one of the dimensions of the reinforcing phase in nano-scale.

The main difference between nano-composites and conventional composites is their ability to achieve superior performance at a very low concentration of the filler. The majority of the active or potential applications of nano-systems is based on their thermo-mechanical behaviour, flame resistance and electrical properties. Under this point of view nano-composites exhibit properties or functions, which seem to be prohibited for traditional materials.

High tech electronic devices require new high dielectric permittivity materials (known as high-K materials), which combine, at the same time, suitable dielectric properties, mechanical strength and ease processing. Recently ceramic-polymer composites have been studied in various applications including integrated capacitors, acoustic emission sensors and for the reduction of leakage currents. Furthermore, if the embedded ceramic particles are ferroeletric, functional properties can be added to the composite structure. Ferroelectric materials exhibit spontaneous polarization and are characterized by a temperature dependent disorder to order transition. Thus, besides all the expected influences (volume fraction, geometrical characteristics, type of distribution etc), the electrical response of ferroelectric particles – polymer matrix composites depends on the ferroeletric to paraelectric transition of the inclusions.
In the present study composite systems of epoxy resin and ceramic BaTiO3 micro and nano – particles have been prepared, varying the volume fraction of the inclusions. The dielectric response of the composites was studied in a wide frequency and temperature range.

Broadband Dielectric Spectroscopy (BDS) has been proved to be a powerful tool for the investigation of molecular mobility, phase changes, conductivity mechanisms and interfacial effects in polymers and complex systems.

The dielectric response of nano-composites was examined by means of Broadband Dielectric Spectroscopy (BDS) in the frequency range10-1-107 Hz and temperature interval from 30 o C to 160 o C.

Experimental results include relaxation phenomena arising from both the polymeric matrix and the filler. Three distinct relaxation modes were recorded in the spectra of all systems. They were attributed to interfacial polarization, glass transition (α-relaxation) and motion of polar side groups (β – relaxation).

The functional behaviour of micro and nano – composites is based on the disorder to order transition of BaTiO3 in the characteristic Curie temperature (~130 oC). The transition from the ferroelectric to paraelectric phase has been studied via Dielectric Spectroscopy and with X – Ray Diffraction spectra. The change in polarization and the formation of peaks in the diagrams of the real part of dielectric permittivity versus temperature can provide the suitable basis for the development of smart systems and nano-devices, since it allows the control of the stored electrical energy in nanoscale level and achieves the function of polarization regulator.
Finally, by introducing the Dielectric Reinforcing Function, the composite systems’ response can be studied and optimal functional behaviour as well as optimal energy storage and capability can be determined.

Identiferoai:union.ndltd.org:upatras.gr/oai:nemertes:10889/1630
Date18 June 2009
CreatorsΠατσίδης, Αναστάσιος
ContributorsΨαρράς, Γιώργος, Patsidis, Anastasios, Ψαρράς, Γιώργος, Κωστόπουλος, Βασίλειος, Κροντηράς, Χριστόφορος
Source SetsUniversity of Patras
Languagegr
Detected LanguageGreek
TypeThesis
Rights0
RelationΗ ΒΥΠ διαθέτει αντίτυπο της διατριβής σε έντυπη μορφή στο βιβλιοστάσιο διδακτορικών διατριβών που βρίσκεται στο ισόγειο του κτιρίου της.

Page generated in 0.0027 seconds