We report the synthesis of ultra-high aspect ratio copper nanowires (CuNW) and fabrication of CuNW-based transparent conductive electrodes (TCE) with high optical transmittance (> 80%) and excellent sheet resistance (R-s < 30 Omega/sq). These CuNW TCEs are subsequently hybridized with aluminum-doped zinc oxide (AZO) thin-film coatings, or platinum thinfilm coatings, or nickel thin-film coatings. Our hybrid transparent electrodes can replace indium tin oxide (ITO) films in dye-sensitized solar cells (DSSCs) as either anodes or cathodes. We highlight the challenges of integrating bare CuNWs into DSSCs, and demonstrate that hybridization renders the solar cell integrations feasible. The CuNW/AZO-based DSSCs have reasonably good open-circuit voltage (V-oc = 720 mV) and short-circuit current-density (J(sc) = 0.96 mA/cm(2)), which are comparable to what is obtained with an ITO-based DSSC fabricated with a similar process. Our CuNW-Ni based DSSCs exhibit a good open-circuit voltage (V-oc = 782 mV) and a decent short-circuit current (J(sc) = 3.96 mA/cm2), with roughly 1.5% optical-to-electrical conversion efficiency.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/622550 |
Date | 23 September 2016 |
Creators | Zhu, Zhaozhao, Mankowski, Trent, Shikoh, Ali Sehpar, Touati, Farid, Benammar, Mohieddine A., Mansuripur, Masud, Falco, Charles M. |
Contributors | Univ Arizona, Coll Opt Sci, College of Optical Sciences, The Univ. of Arizona (United States), College of Optical Sciences, The Univ. of Arizona (United States), Qatar Univ. (Qatar), Qatar Univ. (Qatar), Qatar Univ. (Qatar), College of Optical Sciences, The Univ. of Arizona (United States), College of Optical Sciences, The Univ. of Arizona (United States) |
Publisher | SPIE-INT SOC OPTICAL ENGINEERING |
Source Sets | University of Arizona |
Language | English |
Detected Language | English |
Type | Article |
Rights | © 2016 SPIE |
Relation | http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2237406 |
Page generated in 0.0019 seconds