Ce mémoire est consacré au développement et à l'application d'une méthode permettant de caractériser finement les propriétés physiques (densité d'hélium, pression, diamètre, morphologie) de bulles d'hélium de taille nanométrique pour in fine améliorer la compréhension du comportement de ces nano-systèmes. L'approche que nous avons choisie est basée sur la spectroscopie de pertes d'énergie des électrons et l'acquisition de spectres images en microscopie électronique en transmission filtrée en énergie. Les différentes étapes d'acquisition, de correction des aberrations, et de traitement des spectres sont détaillées. L'erreur sur la mesure est estimée, et des améliorations potentielles de la méthode sont discutées. Nous montrons de plus que cette approche permet non seulement de dépasser les limites imposées par la microscopie électronique en transmission à balayage habituellement utilisée, mais aussi d'aller au-delà, en terme de statistique notamment. Nous appliquons ensuite notre méthode pour déterminer les propriétés physiques de bulles d'hélium dans le silicium, lors de recuits thermiques in situ dans le microscope. L'évolution des caractéristiques morphologiques des bulles est mise en rapport avec la variation de la densité d'hélium qu'elles contiennent suite à ces recuits. Les valeurs de densité et de pression obtenues sont comparées aux valeurs disponibles dans la littérature par des méthodes expérimentales ou numériques. Enfin, le transfert de notre méthode pour l'étude de bulles dans d'autres matrices (germanium, carbure de silicium, euxénite) est discuté. / This thesis is dedicated to the development and application of a method allowing for the fine characterization of the physical properties (density, diameter, pressure and morphology) of helium bubbles at the nanometric scale, to eventually improve the understanding of the behavior of these nano-systems. The chosen approach is based on electron energy loss spectroscopy and the acquisition of spectral images by energy-filtered transmission electron microscopy. The acquisition, aberration correction, and data analysis steps are detailed. The measurement error is estimated, and potential improvements are discussed. We additionally show that this method is not only able to overcome the limits imposed by commonly used scanning transmission electron microscopy, but also to go further, notably in a statistical way. We then apply our method to determine the physical properties of helium bubbles in silicon, during in situ thermal annealing in the microscope. The evolution of the morphological characteristics of the bubbles is put in relation with the variation of the density of the helium contained following these annealings. The density and pressure values are compared to those available in the litterature through experimental and numerical methods. Finally, the translation of this method towards the study of bubbles in other matrices (germanium, silicon carbide, euxenite) is discussed.
Identifer | oai:union.ndltd.org:theses.fr/2016POIT2266 |
Date | 12 May 2016 |
Creators | Alix, Kévin |
Contributors | Poitiers, Pizzagalli, Laurent, David, Marie-Laure |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image, StillImage |
Page generated in 0.0019 seconds